

Research Article

Article History

Received: 12.05.2024

Accepted: 18.06.2024

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: PhytoTalks Journal. All right reserved.

Cite this article: Dixit P. The Impact Heat and Radiation on the Germination Process of Radish Seeds. *PhytoTalks*. 2024; 1(2): 114-121.

The Impact Heat and Radiation on the Germination Process of Radish Seeds

Pallavi Dixit

Department of Botany

Mahila Vidyalaya Degree College, Lucknow, India

Corresponding author's Email: drpallavidxit80@gmail.com

Abstract

Scientists are investigating the impact of technology on the natural environment through experiments as humanity becomes more and more reliant on technology. To find out if microwave radiation exposure affects the germination of the radish seed, the following research was carried out. The findings indicate that microwave energy has an impact on radish seed germination. In comparison to a control set or another set of the radish seed that were microwaved for one or a half minute, seeds subjected to the microwave for four minutes exhibited over 150% more seeds germinating over a period of six days. These findings provide one instance of how the natural world responds to the radiant energy generated by artificial items. The impact of radiation and heat on germination will be covered in this essay.

Keywords: Radiation, Heat, Germination, Radish Seeds, Microwave.

1. Introduction

Radiation levels can impact radish seed germination, resulting in changes to the plant's typical activity. Microwaves and ovens are common sources of radiation for science hobbyists. Radish seeds have also been subjected to various forms of irradiation in scientific investigations, either to prevent illness in radish plants or to increase their general output¹.

1.1. Improved Disease Resistance

Researchers from Japan's National Food Research Institute found that exposing radish seeds to radiation drastically diminished the amount of *E. coli* bacterium present in the seeds. To different degrees of efficacy, the therapy also helped the alfalfa, mung bean, and broccoli plants. For the greatest outcomes, researchers first exposed the seedlings to dry heat for 17 hours before exposing them to radiation. The rate of seed germination, however, was unaffected by this radiation dose. The same researchers discovered in independent studies that adding dry heat to an elevated radiation dose with 2.5 KGY fully killed *E. coli*. This 2.5 KGY irradiation procedure did, however, have an impact on germination, shortening this radish sprouts. Neither seeds of mung bean sprouts nor alfalfa were negatively impacted².

1.2. Improved Growth Rate:

A study that was published in this Korean Journal of Horticultural Science and Technology found that low doses of gamma radiation had an impact on the germination, early growth, or antioxidant content during radish seeds.

Gamma radiation-exposed seeds grew 8 to 14 % larger than ordinary seed after germination. Radiate seed that were then placed in storage for up to a year showed no signs of alteration. Even yet, the stored and radioactive seeds grew a little more slowly than conventional seeds. However, whether incubated at ambient temperature or at 10o C, seed that were allowed to germination after radiation showed faster germinated. Radiation doses with 4 Gy, 8 Gy, 16 Gy, or 32 Gy were employed in the experiments. A 36.6 % longer time had passed for those exposed to 4 GY than for the control group. The antioxidant activity was 8% higher in those exposed to 8 GY. Overall, radiation levels of 16 or 32 GY were the best since they showed early growth, increased size, and antioxidant activity³.

Figure 1: Radish Plants

Raphanus sativus L., a member of this Brassicaceae family that is utilized in cooking and as an addition to the diet, is more commonly known as "white radish" throughout the world. *R. sativus* is mostly consumed by people all over the world in this form with salads, vegetables, pickles, or juice. This utilized of *R. sativus*' various sections in resolving jaundice is supported by traditional medical practice, it also contains a variety of vitamins, carbs, sugars, fibers, minerals, along with secondary metabolites, all of which have promising biochemical effects on promoting human health. *R. sativus* is currently sought after by scientific communities as a component in the creation

of nutritious food. The growing number of people worldwide is pushing up consumption of food to new highs while also contribute to environmental degradation. One of the objectives of the Sustainable Development Goals is to eradicate world hunger, since sustaining the increasing global population is a major socioeconomic issue on a worldwide scale. Global development, building of the infrastructures, thus industrialization is damaging the land, lowering earnings, and eventually jeopardizing the availability of food. Maintaining and increasing crop and food production through a variety of methods is crucial to addressing the issues associated with food security. Modern farming practices that are socially acceptable, economically possible, and sustainable⁴.

Reduction of initial seed germination development and growth is being accelerated by land degradation, genetic variety loss, seed damage, overuse of pesticides, nutrient loss, or hasty watering practices in modern agriculture. There are a number of physical, chemical, and biological solutions used to deal with the issue of seeds losing their ability to germinate and seedlings growing too quickly. Although those techniques can increase germination rates and speed up seed germination, they are labor- and time-intensive and leave behind residues that could harm the environment.

One of the most delicate and important steps in a plant's physiological development is seed germination. Over the past few decades, extensive plasma science research and its applications have produced a variety of data demonstrating how LTP seedling stimulation can dramatically enhance initial growth of seeds during development. One technology that has been shown to increase the potential of plant cultivation is low-temperature plasma (LTP). 5 Pre-sowing LTP pretreatment can promote sprouting, development, enzyme production, or plants

yields, as well as speeding increase the germination of seeds and improve reproduction frequency.

The water adsorption, resulting in the concealed phase of the embryo to be broken down, has an impact on seed germination rates, which are a gauge of how efficiently the crop could be generated ultimately. The primary process underlying these beneficial effects of plasma therapy in the seed is mainly due to plasma's capacity to produce a physically rich, healthy atmosphere, as well as its capacity to allow the transportation of energy reactive molecules on the outside of biological cells, which is extremely beneficial. Furthermore, the LTP therapy reduces surface pollution and inhibits the spread of harmful pathogenic microbes in seedling.

In order to improve seed germination or seeds growth of regularly utilized food without having a detrimental environmental impact, plasma application is one of the finest methods. Studies on radishes' seeds have been conducted because they are grown and eaten all over the world. Plasma from cold temperatures has been shown to improve seed disinfecting and sprouting while also improving growth of crops, generation of biomass, branched out, seeds maturing, or resistant to disease. Investigations exposing seedling with Ar-O₂ admixture discharging gas revealed that LF microwave hybrid plasma generated fewer reactive oxygen compounds than a conventional LF plasma jet. SEM examination demonstrated that the etched impacts on the seed's coating caused by the argon plasma procedures altered the wettability within the radish seeds. Plasma treatment had an impact on the kinetics of seed germination, while seed color and storage duration after harvest had an impact on the maximum germination rate⁶.

Notable previous work:

Global warming and fluctuations in ozone layer thickness are expected to bring more dangerous radiation from the sun into the troposphere's lower layers. Several factors, particularly industrial processes as an instance, the utilization of chlorofluorocarbons (CFCs), which have a negative impact on this formation of ozone, are contributing towards the ozone layer's variability. The level of coverage of this ozone layer influences the quantity of radiation that penetrates the earth's surface, particularly ultraviolet (UV) radiation⁷. Radiation has a substantial impact on several biological and physiological functions in animals as well as plants. It has been demonstrated that exposure to more radiation causes skin damage, generalized DNA damage, human vision loss, cress seedling suppression, and restrictions on anthocyanin production in corn⁸.

There is a wide spectrum of impacts that radiation exposure has been discovered to have on seeds. In a study on the effects of radiation on seeds conducted by Marcu et al.⁹ it was discovered that radiation affects both the germinate potential along with actual qualities of these seeds that have emerged (such as root or shoot lengths). Germinate potential refers to this proportion of seeds that have successfully germinated overall as well as this timing of germination relative to the time the seeds were planted. Furthermore, it was discovered that seeds with radiotherapy had less photosynthetic pigment than seeds without radiotherapy. It is evident that radiation affects both the quantity and quality of seeds⁹.

Temperature has three key effects on sprouting: moisture, hormone production, and the activity of enzymes. Seeds need water for germination, consequently that they have

to consume it. This cannot occur unless there is sufficient moisture. Warmer temperatures may cause greater transpiration and less humidity, which is harmful to fertilization. Furthermore, some environmental simulations predict greater variability in the process of precipitation that could have an immediate influence on the hydrologic cycle in a variety of places (IPCC 2007)¹⁰.

These investigations have gathered valuable information, however because the trials were carried out indoors under artificial settings, they may have overestimated the impact of radiation on plant functions. In order to determine what impact radiation affects the development of plants, field studies are required where seedlings are subjected to radiation in the environment, and their bodily reactions are investigated. In this work, we employ high altitude weather balloons to expose three different types of seeds to stratospheric radiation: garden bean (*Phaseolus vulgaris* L.), corn (*Zea mays* L.), or radish (*Raphanus sativus* L.), or we employ germinating efficiency with growth of stems as indices to investigate the effect of radiation on seeds¹¹.

Objectives

To optimize radish seed germination and growth, at least three small plates corresponding to different seed treatments were prepared. Radishes were particularly sensitive to temperature variations, with seed failing to sprout in soil temperature surpassing 35°C, while their optimal growth occurred within the range of 7 to 29°C. Germination, the pivotal process of seed development into new plants, generally transpired when a seedling emerged from either an angiosperm or gymnosperm seed, with the most favorable temperature ranging between 25°C to 35°C.

Methodology

This study's overall structure was exploratory. Each seedling was measured by the researchers from the bottom of the base of this root through the top of cotyledon. A seeds final measurement still contained any root tips or cotyledons that separated during handling. Radish seeds that did not sprout were given a millimeter count of 0.

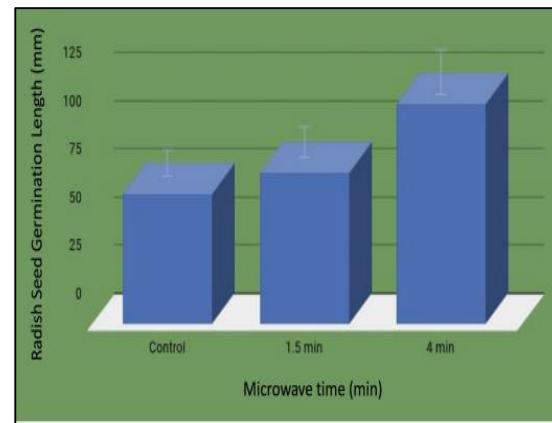
We calculated and reported average seeds germinate rates with the 20 seeds in a 1.5 microwave, 4-minute microwave, as well as controlled groups. A second lot of 60 radish seed comprising these initial seeds package was utilized in every step of the study on an additional day. To ensure consistency with this previous study, a second group of radish seeds were placed in this same Petri dishes as the first batch. Over a six-day span, the room's temperature stayed at 21–22°C¹².

Result and Discussion

An approved test was conducted using 20 radish seeds in every group of experiments plus the control group to evaluate the influence of radiant radiation upon the development of radish seed. In the present study, radish seeds were heated using microwave oven radiation. Both independent groups of subjects were exposed to differing quantities in microwave radiation: one set for radish seeds spent 1.5 minutes within the microwave, whereas the other endured 4 minutes inside the microwave.

The authority group of radish seeds received no microwave treatment. After six days, we utilized a metric ruler to measure each seedling's germinating length, which is the millimeter separation between the base between its root tip with the apex of the cotyledon. On an alternate day, we conducted second research. The average radish seed development length was estimated from the

information gathered by summing the radish seed germinated durations for every category and multiplying by 40 (the total number of seeds). This study's findings indicate that seed being exposed to microwave technology for more than 1.5 minutes may have an effect on radish seed development¹³.


The seeds which were microwaved for 4 minutes developed an average of at 114.8 mm, which was approximately 1.5 times longer than either the control along with the 1.5-minute microwave group (Figure 2). Conversely, the seeds in the microwave for both the control or 1.5-minute microwave groups developed at 67.8 mm (control) with 78.6 mm (1.5-minute microwave) (Figure 2).

14

An ANOVA statistical analysis comparing the three groups participating in the experiment yielded F values of 12.12 and 3.07, respectively. Therefore, were able to reject the null assumption because the F value surpassed the critical value of F, and we concluded that there was indeed an important distinction between the three radishes seedling groupings depending on how long they were subjected to the microwave. A t-test was also used to compare both the control and the experimental groups. The rate of germination of radish seeds in the control along with 1.5-minute microwave groups was not significantly different ($p = 0.231$). The 1.5-minute exposure period doesn't seem to have altered radish seed development; hence the no effect hypothesis cannot be rejected. However, the test for significance indicated an important statistical distinction between this control group and 4-minute microwave radish seed groups ($p = 0.000042$).

This suggests that being exposed to sunlight within a microwave for 1.5 to 4 minutes affects the ability of radish seeds to develop into plants. It was concluded that the seeds of radish exposed to microwave radiation for up to 4 minutes produce seedling that survive more than 1.5 times longer after a 6-day germinating period. 15

The procedure was repeated on a second day to investigate statistical variability, as multiple variables can influence the procedure for germination. Despite performing the experiments across multiple days, we noticed that the identical experimental groups had comparable germination times (Tables 1 and 2). Between tests 1 or 2, the untreated radish seed sprouted on the average 62 mm rather than 73 mm; the 1.5-minute heated in the microwave seeds propagated on average 80 mm rather than 77 mm; and the 4-minute heated in the microwave seeds developed on the average 112 mm rather than 117 mm. We conclude that the consistency of the experimental result among radish seed group indicates a well-monitored experiment with a high level of accuracy for detecting the effects of radiant radiation on seed germination.

Figure 2. The average time for seeds to germinate after six days

Table 1. The average of the germination data from Experiments 1 and 2

Groups	Count	Sum	Average	Variance
Control Group	40	2711	67.8	1934.2
11/2 Minute Microwave	40	3144	78.6	1286.9
4 Minute Microwave	40	4590	114.8	2742.1

Table 2. The average length of radish seed germination by experiment after six days¹⁷

Experimental Groups	Experiment #1 (n=60)	Experiment #2 (n=60)
Control	62.4 mm	73.15 mm
1.5 Minute Microwave	79.75 mm	77.45 mm
4 Minute Microwave	112.3 mm	117.2 mm

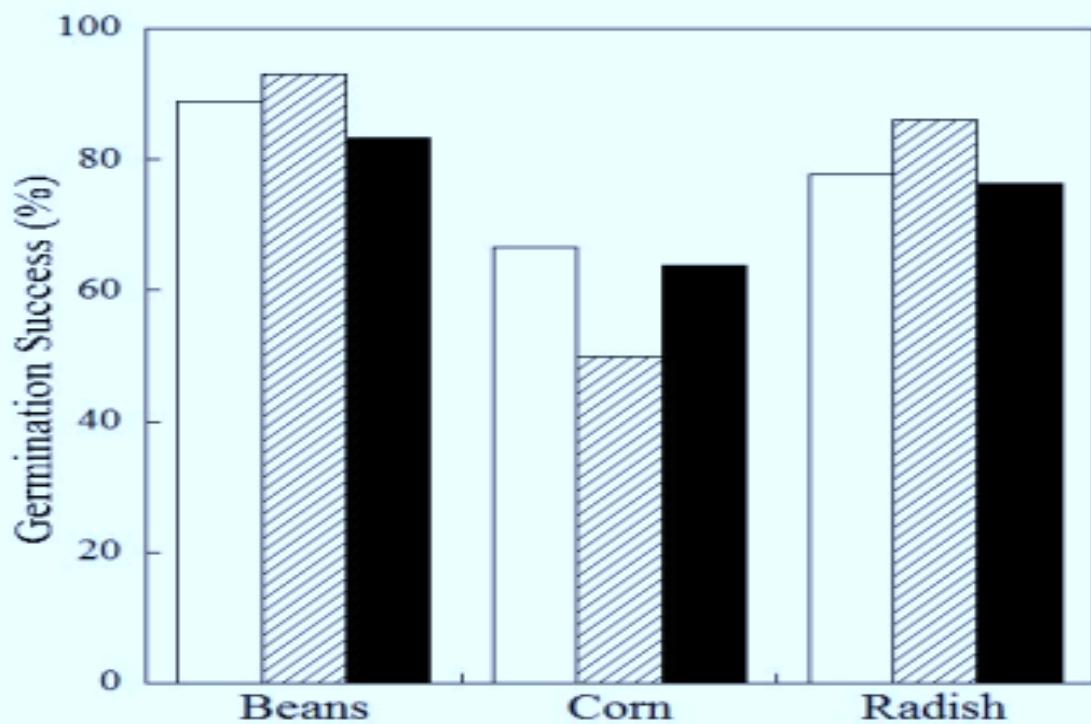


Figure 3. The percentage of seeds that germinated compared to those planted of a specific type and exposure, representing germination success with 5% error. The seeds were divided into three groups: outside (dark), inside (diagonal), and control (clear). 21

The proportion of seeds that developed was investigated after studying how radiation impacted seeds. Figure 3 shows the success percentage of germination of seeds for each type of seed. The rate at which germinates of bean seeds produced in the lab (as a control) is approximately 88.9%. The germination success percentage for protected seedlings (inside the payload box) was 93.1%

The initial germination success percentage for seeds that were placed outside the box and subjected to high radiation was 83.3%. In the lab, control maize plants germinated at an 83.3% rate. The average success rate of seeds made from corn inside the box (inside) was 63.8%, which was significantly lower than the achievement rate for the control seeds, although the effectiveness rate of radiation-exposed seeds outside (outside) was 86.1%, which was slightly higher than the control¹⁹.

The ingestion of radiation was also discovered to improve the likelihood of radish germination. The germination success rate of the radish seedlings within the payload box was 86.1%, compared to 77.8% for the control seeds and 76.4% for the seeds inside the payload box. Figure 3 illustrates a comparison of germination rates. Statistics revealed that the overall height of control bean plants differed significantly from outside and inside bean plants ($p=5.296E-5$ and $p=1.768E-3$, respectively)²⁰.

Conclusion

Radiation not only affects a seed's likelihood of germinating, but it also has long-term consequences for the seedlings' eventual survival rate. Given how crucial plants are to the maintenance of healthy ecosystems, this is incredibly pertinent. It is crucial to take into account how radiation may affect the quantity and quality of new plants that are produced as an ecosystem is rebuilt. Plants are frequently the key to an ecosystem's ability to recover after a disaster. In addition, a lot of study has been done on using

radiation in agriculture to control the growth of microorganisms.

References

1. Scialabba A, Tamburello C. (2002) Microwave effects on germination and growth of radish (*Raphanus sativus* L.) seedlings, *Acta Bot Gallica*. 2002; 149(2): 113-123. <https://doi.org/10.1080/12538078.2002.10515947>
2. Bari ML, Nei D, Enomoto K, Todoriki S, Kawamoto S. Combination Treatments for Killing *Escherichia coli* O157:H7 on Alfalfa, Radish, Broccoli, and Mung Bean Seeds. *J Food Prot.* 2009; 72(3): 631–636.
3. Bari ML, Nazuka E, Sabina Y, Todoriki S, Isshiki K. Chemical and Irradiation Treatments for Killing *Escherichia coli* O157:H7 on Alfalfa, Radish, and Mung Bean Seeds. *J Food Prot.* 2003; 66(5):767–774.
4. Sadhu S, Thirumdas R, Deshmukh RR, Annapure US. Influence of cold plasma on the enzymatic activity in germinating mung beans (*Vigna radiata*). *LWT - Food Sci Technol.* 2017; 78:97–104.
5. Iranbakhsh A, Ghoranneviss M, Oragh Ardebili Z et al (2017) non-thermal plasma modified growth and physiology in *Triticum aestivum* via generated signaling molecules and UV radiation. *Biol Plant.* 2016; 61:702–708.
6. Varnagiris S, Vilimaite S, Mikelsonyte I et al. The combination of simultaneous plasma treatment with mg nanoparticles deposition technique for better mung bean seeds germination. *Processes.* 2020; 8:1575.
7. Krupa SV. Ultraviolet-B radiation, ozone and plant biology. *Environmental Pollution.* 2000; 110(2):193–4.
8. Solomon S. Stratospheric ozone depletion: A review of concepts and history. *Rev Geophys.* 1999; 37(3):275–316.
9. Marcu D, Damian G, Cosma C, Cristea V. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (*Zea mays*). *J Biol Phys.* 2013;39(4):625-34. <https://doi.org/10.1007/s10867-013-9322-z>
10. IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA.

11. Teramura AH. 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. *Physiol Plant.* 1983; 58(3):415–427.

12. Scialabba A, Tamburello C. Microwave Effects on Germination and Growth of Radish. *Acta Bot Gallica.* 2002; 149(2):113. <https://doi.org/10.1080/12538078.2002.10515947>

13. Nambara E, Hiroyuki N. Seed Biology in the 21st Century: Perspectives and New Directions. *Plant Cell Physiol.* 2012; 53(1):1-4.

14. Campbell NA Neil. Biology Exploring Life. Pearson Education Inc. New Jersey, 2004.p. 445.

15. Kroger C, Reddy K, Poston D. “Factors Affecting Seed Germination, Seedling Emergence, and Survival of Texas weed (*Caperonia palustris*)”. *Weed Science Society of America.* 2004; 52(6):989.

16. Awan T, Chauhan B, Cruz P. “Influence of Environmental Factors on the Germination of *Urena lobata* L. and its Response to Herbicides”. *Plos ONE.* 2014; 9(3): e90305.

17. Ragha L, Mishra S, Ramachandran V, Singh, Bhatia M. Effects of Low-Power Microwave Fields on Seed Germination and Growth Rate. *Journal of Electromagnetic Analysis and Applications.* 2011; 3(5): 165-171.

18. Teramura AH. Effects of ultraviolet-B radiation on the growth and yield of crop plants. *Physiol Plant.* 1983; 58(3):415–427.

19. Tevini M, W Iwanzik, and U Thoma. Some effects of enhanced UV-B irradiation on the growth and composition of plants. *Planta.* 1981; 153(4):388–394.

20. Tezuka T, T Hotta, I Watanabe. Growth promotion of tomato and radish plants by solar UV radiation reaching the Earth’s surface. *J Photochem Photobiol. B.* 1993; 19(1):61–66.

21. Tezuka T, F Yamaguchi, and Y Ando. 1994. Physiological activation in radish plants by UV-A radiation. *J Photochem Photobiol. B.* 1994; 24(1):33–40.