

Review Article

OPEN ACCESS

Article History

Received: 14.10.2025

Revised: 29.11.2025

Accepted: 17.12.2025

Online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Soumya and Sharma SK. The Cultural and Healing Worth of Pteridophytes: An Ethnobotanical Impression. *PhytoTalks*. 2025; 2(4): 599-609.

The Cultural and Healing Worth of Pteridophytes: An Ethnobotanical Impression

Soumya¹ and Supriya Kumari Sharma*

¹Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India

*Corresponding author Email: supriyasharma2608@gmail.com

Abstract

Pteridophytes, one of the ancient plant groups, have been utilized in the ethnic and therapeutic practices of many cultures. They comprise lycopophytes and ferns. These primitive "vascular cryptogams" are much more than decorative plants from the evolutionary past; pteridophytes have been used multifariously in customary medications as a valuable constituent of ethnobotany. Apart from therapeutic uses, these plants are used as sacrament plants, foods, homely items, and culturally distinct symbols all through Asia, Africa, Europe, and America. For centuries, species like *Adiantum capillus-veneris*, *Drynaria quercifolia*, *Pteris multifida*, and *Selaginella bryopteris* have been employed in conventional medical systems like Unani, Ayurveda, and Traditional Chinese Medicine. Currently, many indigenous peoples still use locally grown species of pteridophytes for daily nutrition and useful remedies. Regardless of their widespread cultural presence, these plants are still less studied in contemporary *materia medica*. However, an array of bioactive chemicals with antimicrobial, antioxidant, anti-inflammatory, and anticancer potentials have recently been found. This review reveals the perpetual implication of pteridophytes and gives importance to the need to sustain traditional knowledge, lift the sustainable use, and explore their potential in upcoming drug invention by amalgamating global ethnobotanical acquaintance with modern scientific understandings.

Keywords: Pteridophytes, Ethnobotany, Traditional Medicine, Indigenous Knowledge, Cultural Uses, Biodiversity Conservation

1. Introduction

J.W. Harshberger established the term "ethnobotany" in 1895 to classify the study of the intricate relationships that occur amongst plants and humans, particularly in ecological, cultural, and social circumstances. Ethnobotany, which was primarily demarcated as the study of plants used by native and ethnic societies, has developed into a multidisciplinary discipline that cartels traditional acquaintance with modern methods of resource management, biodiversity safety, and viable development. Exploring the ecological, figurative, ceremonial, and socio-economic characteristics of human-plant interactions goes beyond merely registering plant uses¹⁻³.

With fossil records going back to the Silurian period, i.e., more than 400 million years ago, these primitive vascular cryptogams represent some of the most primitive land-dwelling flora on earth. They display a staggering diversity of morphological and physiological variations that allow them to establish in terrestrial, epiphytic, xeric, and aquatic environments with about 10,500 species reported worldwide. Their placement amid bryophytes and spermatophytes, marks a pivotal alteration toward the progress of vascular tissues, dominant sporophytic generations in their life cycle, and, in certain groups (Lycopophytes), the rise of heterospory—an initiation to the progression of seeds that makes them evolutionary very significant⁴⁻⁶.

Since pteridophytes tend to grow almost all over the world, several ethnic groups in Asia, Africa, Europe, and America have been able to incorporate these plants deeply into their customs. Their ethnobotanical impact holds ritualistic practices, food uses, ecological functions, and medicinal uses. For more than two millennia, pteridophytes have been used as therapeutic plants in various ethnic medicinal systems. The medicinal capacities of species like *Adiantum capillus-veneris*, *Marsilea minuta*, and *Selaginella bryopteris* are described in ancient Indian texts like 'Charaka Samhita' and 'Sushruta Samhita'. Akin to this, ferns like *Lygodium japonicum*, *Selaginella tamariscina* and *Pteris multifida* are valued for their hemostatic, decontaminating, and anti-inflammatory qualities in Unani Ayurveda, and Traditional Chinese Medicine. For instance, in Unani medicine system, *Adiantum capillus-veneris* is used to treat respiratory and urinary ill conditions, which reflects its worth in various cultural healing philosophies⁷.

Pteridophytes have been assimilated into daily life, food systems, and rituals by aboriginal and ancestral populations around the ecosphere, who have established rich ethnomedicinal traditions including them. In South Asia and Southeast Asia, species like *Diplazium esculentum* are used as nutraceuticals and medicines, and epiphytic ferns species like *Drynaria quercifolia* and *Nephrolepis cordifolia* are used in treatments for skeletal related problems, respiratory diseases, and reproductive conditions⁸. Ferns also have several cultural uses besides their medicinal uses: in some ethnic societies, they are used as body beautifications, ornamentals, protecting talismans, and bioresources for insulation. Since a large percentage of this traditional knowledge is passed down vocally, it is inclined to decline in the face of modernization and altering cultural customs⁹.

Compared to angiosperms, pteridophytes have been used for a long time, but their incorporation into contemporary pharmacology is still quite limited. However, current studies are highlighting their bioactive potential more and more, finding substances with anti-inflammatory, diuretic,

anticancer, antioxidant, and antimicrobial qualities. This increasing interest highlights the necessity of methodically recording and assessing the traditional knowledge about pteridophytes in order to promote conservation and support their potential role in future drug discovery¹⁰.

This review summarizes ethnobotanical acquaintance from around the world regarding the cultural, medicinal, and ecological value of vascular cryptogams. It explores their phytochemical and pharmacological potential, highlights their traditional uses in various societies, and emphasizes the value of conserving ethnobotanical knowledge systems for long-term use and further scientific research.

2. Literature Search Strategy

A comprehensive literature survey was conducted to compile ethnobotanical and medicinal information on pteridophytes. Relevant peer-reviewed research articles, review papers, ethnobotanical surveys, books, theses, and reports were retrieved from major scientific databases, including Scopus, Web of Science, PubMed, Google Scholar, JSTOR, and ScienceDirect. Additional information was sourced from classical ethnobotanical texts and regional floras.

3. The Review's Objectives

The accumulated knowledge of indigenous and local communities regarding the use of plants for food, medicine, and cultural customs is known as ethnobotanical knowledge. Because of migration, habitat loss, modernization, and the deterioration of oral traditions, this knowledge is rapidly disappearing. In order to prevent irreversible cultural and biological loss and to promote the sustainable use of plant resources, many studies conducted over the past ten years have stressed the importance of recording traditional practices.

Despite being frequently disregarded in ethnobotanical literature, pteridophytes have significant ecological, cultural, and medicinal value. Their various bioactive compounds have wound-healing, antimicrobial, anti-inflammatory,

and antioxidant properties. Despite this potential, their ethnobotanical applications are still less common than those of angiosperms, highlighting the necessity of a thorough synthesis of the available data to comprehend their function in indigenous healthcare systems¹¹. Therefore, this review addresses the need to: (i) maintain dwindling traditional knowledge of pteridophytes; (ii) emphasize its ethnopharmacological potential; and (iii) support conservation and sustainable utilization measures.

3.1 The Value of Ethnobotanical Research in Maintaining Conventional Knowledge

The importance of ethnobotanical research in preserving traditional knowledge before it is lost is highlighted by recent studies. Pteridophytes continue to be an essential part of primary healthcare in many tribal and rural areas for the treatment of wounds, fevers, respiratory conditions, digestive issues, and other common illnesses. In addition to providing crucial baseline data on species use, preparation techniques, and regional healthcare systems, documentation of such practices protects cultural traditions.

The pharmacological potential of pteridophytes is also revealed by ethnobotanical records. Numerous fern species that have long been used in traditional medicine have been found to have scientifically proven antioxidant, antimicrobial, anti-inflammatory, and wound-healing qualities. These documents direct bioprospecting activities and provide information for later phytochemical and pharmacological studies¹².

Additionally, by emphasizing culturally significant or heavily harvested species, ethnobotanical documentation aids in conservation planning. Sustainable-use strategies are strengthened and participatory approaches are encouraged when formal conservation frameworks are integrated with local knowledge. In general, ethnobotanical research provides a basis for protecting cultural heritage, directing the development of new drugs, and encouraging the preservation of biodiversity¹³.

3.2 Worldwide Distribution

There are about 11,500 species of ferns worldwide, with tropical and subtropical mountainous areas having the highest diversity. Despite making up only around 7% of the planet's land area, eight equatorial and semitropical mountain biodiversity hotspots are home to nearly 58% of all fern species. Central America, the Caribbean, the Andean tropics, eastern Brazil, northeastern South America, Madagascar, Malesia, and East Asia are notable areas of richness.¹⁴⁻¹⁷ Climate and elevation gradients are closely correlated with fern diversity. The highest species richness is found in humid, topographically complex areas with high temperature and precipitation variability. The ecological significance of montane habitats, which make up less than 2% of the world's land area, is highlighted by the fact that nearly half of all fern species are found there¹⁴.

3.3 Distribution by Region (India)

More than 1,000 species of pteridophytes from 67 families and 191 genera can be found in India. The main hubs of fern diversity are found in the Eastern, Western, and Himalayan regions¹⁸. A rich pteridophytic flora, including several rare, threatened, and endemic taxa, is supported by the nation's diverse climates, altitudes, and soil types. The Western Ghats, northeastern India, and the Himalayan belt are especially important for endemism and species richness.

3.4 Literature Review

Pteridophytes are special vascular cryptogams with distinctive foliage morphology and separate sporophytic and gametophytic generations. Approximately 1,300 species have been identified in India across major phytogeographical zones like the Himalayas, Western and Eastern Ghats, Central India, and the Andaman & Nicobar Islands, out of the approximately 13,600 extant species found worldwide¹⁹.

As early as Theophrastus and Dioscorides' writings, the medicinal applications of pteridophytes were acknowledged. Ayurvedic, Unani, Siddha, homeopathic, and tribal medical

systems all make extensive use of them in India. Indian pteridophyte taxonomy is still based on Beddome's groundbreaking "Handbook of the Ferns of British India, Ceylon, and the Malay Peninsula" (1883).

Ferns are prized for their aesthetic qualities and are frequently used as ornamentals and horticultural plants in addition to their therapeutic uses. They are increasingly being used in landscaping and nurseries.

Pteridophytes are used as vegetables, fodder, fibers, oils, natural dyes, and fragrances, among other cultural, medicinal, and commercial uses, according to international ethnobotanical research. Their pharmacological potential is highlighted by recent research: for instance, *Drynaria fortunei* exhibits bone-strengthening properties²⁰, while *Diplazium esculentum* demonstrates anti-inflammatory and chemopreventive activities²¹. As interest in plant-based and alternative medicine grows, pteridophytes are emerging as promising subjects for contemporary ethnopharmacological research²².

4. Representative Ethnobotanically Important Pteridophytes

1. *Adiantum capillus-veneris* L. (Maidenhair fern)

- **Habit/Habitat:** Small lithophytic fern; grows on limestone rocks, cliffs, and moist ravines.
- **Key Uses:** Paste of leaves/rhizome used for wounds, hair tonic, bronchial ailments, fever, and menstrual issues. Decoction used for childbirth support and gynecological disorders. Fresh juice used for cough and diabetes.
- **Ethnopharmacology:** Shows bronchodilatory, anti-inflammatory, anxiolytic, and antidepressant activity.

2. *Diplazium esculentum* (Retz.) Sw. (Vegetable fern)

- **Habit/Habitat:** Large terrestrial fern common along streams and moist slopes.

- **Key Uses:** Popular edible fern used as seasonal vegetable; also applied for constipation, wounds, rheumatism, skin issues, fever, and pregnancy-related care.

- **Ethnopharmacology:** Rich in polyphenols with anti-inflammatory and anticancer potential.

3. *Selaginella bryopteris* (L.) Baker (Sanjeevani Booti)

- **Habit/Habitat:** Lithophyte of arid, rocky habitats; renowned for desiccation tolerance.
- **Key Uses:** Cooling agent for heat stroke, remedy for diarrhea and urinary issues; decoctions used for menstrual problems and postpartum care. Culturally revered as a "life-restoring herb."
- **Ethnopharmacology:** Exhibits antioxidant, antibacterial, and wound-healing activities.

4. *Pteris vittata* L. (Chinese brake fern)

- **Habit/Habitat:** Lithophytic fern on limestone walls, stream margins, and disturbed habitats.
- **Key Uses:** Decoction for dysentery, glandular swellings, fever, urinary troubles; fronds used ceremonially and as cattle-shed cushions.
- **Ethnopharmacology:** Contains rutin and other flavonoids with antibacterial, antifungal, and anti-inflammatory effects.

5. *Osmunda regalis* L. (Royal fern)

- **Habit/Habitat:** Moist slopes near waterfalls, swamps, and humid soils.
- **Key Uses:** Rhizome decoction used as abortifacient and for menstrual disorders; leaf paste for birth control; also used for rheumatism, wounds, and renal issues.
- **Ethnopharmacology:** Traditionally used for musculoskeletal disorders and internal inflammations.

6. *Lygodium flexuosum* (L.) Sw. (Climbing fern)

- **Habit/Habitat:** Moist forest edges, hedges, and stream banks.
- **Key Uses:** Treats menorrhagia, dysmenorrhea, infertility, arthritis, jaundice, skin infections, and leprosy. Widely used in rituals (e.g., Nira festival, Kerala).
- **Ethnopharmacology:** Known for anti-inflammatory, antimicrobial, and wound-healing effects.

7. *Equisetum ramosissimum* Desf. (Horsetail)

- **Habit/Habitat:** Moist, sandy-alluvial soils; often in open to semi-shaded areas.
- **Key Uses:** Used for fertility, kidney stones, skin issues, fractures, urinary troubles, hypertension, and digestive ailments.
- **Ethnopharmacology:** Contains apigenin, kaempferol, quercetin, terpenes, and sterols with strong antioxidant and diuretic properties.

8. *Marsilea quadrifolia* L. (Water Clover)

- **Habit/Habitat:** Ponds, paddy fields, and shallow wetlands.
- **Key Uses:** Paste for cold, cough, skin issues; used for fever, dysentery, urinary disorders, neurological problems, and as famine food.
- **Ethnopharmacology:** Rich in flavonoids and novel polyphenols; shows antioxidant and neuroprotective potential.

9. *Cyathea gigantea* (Wall. ex Hook) (Tree fern)

- **Habit/Habitat:** Moist valleys, evergreen forests, stream sides.
- **Key Uses:** Caudex paste used for wounds, pain relief, diabetes management, gynecological issues, and indigestion. Pith (tashe) consumed as supplementary famine food.

- **Ethnopharmacology:** Contains saponins, triterpenes, sterols, and oleanolic acid with antimicrobial, anti-inflammatory, and antidiarrheal effects.

10. *Nephrolepis cordifolia* (L.) Presl (Ladder fern)

- **Habit/Habitat:** Moist areas near water; roadside fern with creeping rhizomes and tubers.
- **Key Uses:** Tubers used for indigestion, ulcers, fever, jaundice, dehydration, and wounds. Rhizome extract used in traditional female sterilization practices.
- **Ethnopharmacology:** Exhibits antihypertensive, antidiabetic, antimicrobial, and hepatoprotective properties.

11. *Cheilanthes farinosa* (Forssk.) Kaulf. (Silver fern)

- **Habit/Habitat:** Dry, rocky crevices; lime-rich soils.
- **Key Uses:** Extract used for menstrual issues, fever, ulcers, eczema, stomach pain, wounds, and veterinary infections. Stipes used for crafting ear/nose ornaments.
- **Ethnopharmacology:** Fresh fronds show antibacterial activity; root paste effective for skin inflammations.

12. *Drynaria quercifolia* (L.) J.Sm. (Oak-leaf fern)

- **Habit/Habitat:** Epiphytic fern of humid tropical forests.
- **Key Uses:** Rhizome paste for heart problems; fronds used for typhoid, inflammation, migraine, and gastric issues; acts as expectorant and antiseptic.
- **Ethnopharmacology:** Noted for antibacterial and anti-inflammatory effects.

5. Pteridophytes' Secondary Metabolites:

Secondary metabolites are organic compounds that perform essential ecological tasks but do not

directly aid plant growth or reproduction. In pteridophytes, they aid in defense, allelopathy, UV protection, and environmental adaptation. These compounds enhance stress tolerance, mediate interactions between microbes and plants, and significantly boost the medicinal value of ferns. They help plants adapt to biotic and abiotic stresses, such as herbivory, pathogens, intense light, temperature fluctuations, salt, and drought, according to Bennett and Wallsgrove²³.

5.1 Principal Ecological Roles

Ferns and related plants protect themselves through a combination of chemical and physiological strategies. Phytoecdysteroids help defend against herbivorous insects by disrupting their growth and development, while tannins reduce palatability and discourage feeding. Some ferns also exhibit allelopathy, releasing bioactive compounds into the surrounding soil that suppress the growth of neighboring plants and reduce competition. In addition, harmful UV-B radiation is absorbed by epidermal flavonoids, which act as natural sunscreens and protect plant tissues from ultraviolet damage.

5.2 Saccharides

Cyanogenic glycosides release hydrogen cyanide upon tissue damage, deterring herbivores by inhibiting cytochrome c oxidase²⁴. They are mainly reported in *Pteridium* species and *Microgramma vacciniifolia*. Prunasin is the most common cyanogenic glycoside in ferns²⁵.

5.3 Terpenoids

Terpenoids, which are biosynthesized from isoprene units, represent a diverse class of secondary metabolites in ferns and include mono-, sesqui-, di- and triterpenes, as well as carotenoids. Among them, phytoecdysteroids act as analogues of insect moulting hormones and disrupt normal insect development, contributing to plant defense²⁶. Saponins, reported in *Adiantum* species, impart a bitter taste that deters herbivory²⁷. Carotenoids such as β -carotene, common in members of Dryopteridaceae, play an essential role in light harvesting and protect photosynthetic tissues from photo-oxidative damage²⁸. Sesquiterpenes, particularly pterosins

found in *Pteris* species, are of notable pharmacological interest due to their reported antitumor, cytotoxic, antidiabetic, and anti-obesity activities²⁹, and they also participate in microbial interactions while providing antioxidant, anti-inflammatory, and neuroprotective benefits³⁰.

5.4 Alkaloids

Although alkaloids are relatively rare in true ferns, they are abundant in fern allies, particularly members of the Lycopodiaceae. Notable examples include huperzine A from *Huperzia serrata*, a potent acetylcholinesterase inhibitor that has been widely investigated for the treatment of Alzheimer's disease³¹. Related compounds such as huperzines A, B, and R exhibit strong neuroprotective properties³², while lycodine derivatives are known for their antimicrobial activity³³. In addition, hordenine, an alkaloid found in some lycophytes, mimics the action of dopamine and epinephrine and influences cardiovascular as well as metabolic responses³⁴.

5.5 Phenolic Compounds

Phenolic compounds are the most widespread secondary metabolites in ferns, where they function as powerful antioxidants, UV protectants, and antimicrobial agents³⁵. Among these, caffeic and chlorogenic acids are known for their anti-inflammatory and cardioprotective effects, while tannic and gallic acids—classified as hydrolysable tannins—exhibit strong antioxidant, astringent, and wound-healing properties³⁴. The high abundance of phenolics also helps explain why many phenolic-rich ferns successfully thrive in high-altitude environments, as these compounds enhance tolerance to intense ultraviolet radiation³⁶.

5.6 Flavonoids

Flavonoids, a diverse group of \sim 4000 polyphenols, show strong antioxidant, anti-inflammatory, antibacterial, and anticancer activities³⁷. *Dryopteris* species possess flavonoids with cytotoxic effects on ovarian, liver, breast, and lung cancer cell lines^{11, 38}.

6. Pteridophytes' Biological Activities

To adapt to terrestrial stressors like UV radiation, pathogens, and herbivores, pteridophytes developed a variety of biochemical pathways. They produce a variety of bioactive compounds, such as flavonoids, steroids, phenolics, alkaloids, and terpenoids³⁹, thanks to their lengthy evolutionary history. Antioxidant, antibacterial, anti-diabetic, antitumor, antifungal, antiseptic, and anti-inflammatory qualities are provided by these substances⁴⁰. Calaguline⁴¹ and Huperzine A/B are two notable examples.

6.1 Antioxidant Characteristics

Many ferns have strong radical-scavenging activity due to their high polyphenol content⁴². These antioxidants reduce oxidative stress, which is associated with aging, cancer, atherosclerosis, and cardiovascular diseases. Significant antioxidant activity is exhibited by species such as *Drynaria*, *Davallia*, *Dicranopteris*, *Marsilea*, *Equisetum*, *Pteris*, and *Sellaginella*⁴³. Antioxidants aid in preventing reactive oxygen species-induced damage to proteins, lipids, and DNA⁴⁴.

6.2 Antimicrobial Characteristics

Alkaloids, flavonoids, tannins, and glycosides found in the epidermal glands of pteridophytes prevent the growth of microorganisms⁴⁵⁻⁴⁸. *Adiantum*, *Lygodium*, *Pteris*, *Christella*, *Salvinia*, and *Ceratopteris* species have been shown to exhibit antibacterial activity against both Gram-positive and Gram-negative bacteria⁴⁹. *Cheilanthes* and *Marsilea* species exhibit antifungal effects⁵⁰. *Blechnum orientale*, *Woodwardia*, *Lygodium*, *Asplenium*, *Microsorum*, *Pteris*, and *Selaginella*⁵¹ are among the ferns that exhibit antiviral activity.

6.3 Anti-inflammatory Characteristics

Inflammation and cellular damage are caused by an excess of reactive oxygen species. Phenolics, flavonoids, diterpenes, and tannins derived from ferns aid in reducing inflammatory reactions and neutralizing free radicals⁵².

6.4 Anticancer Properties

Fern phytochemicals reduce oxidative stress, inhibit angiogenesis, modulate the cell cycle, and

prevent metastasis, all of which have anticancer and apoptosis-inducing effects. Serratenediol, lycopodine, and lycojaponicumin analogs from *Lycopodium* species exhibit significant anticancer potential^{53, 54}.

7. Pharmaceutical Products

Huperzine A, a reversible acetylcholinesterase inhibitor isolated from *Huperzia serrata*, has gained considerable attention for its potential in the treatment of Alzheimer's disease and has also been used traditionally to manage conditions such as swelling, fractures, and organophosphate poisoning^{55, 56}. Another notable compound, calaguline, extracted from *Polypodium* leaves, exhibits anti-inflammatory and anti-proliferative activities by inhibiting NF- κ B activation^{57, 58}.

8. Preservation and Ecological Use

Because pteridophytes require steady, humid microclimates, habitat disruption quickly lowers their populations⁵⁹. The following are major threats: pollution and invasive species; habitat loss, deforestation, and land-use change; overharvesting for medicinal and ornamental purposes; and climate change that modifies moisture regimes. Epiphytic ferns usually destroy their host trees hence numerous species are currently classified as endangered or vulnerable⁶⁰.

9. Conservation Strategies

These strategies may be *In situ* i.e., preservation of microclimate-dependent ecosystems, and protection of habitats and establishment of protected areas, or *Ex situ* by *in vitro* culture and cryopreservation of gametophytes and sporophytes; living collections; spore banking⁶¹. DNA banks, germplasm, and botanical gardens are other supportive strategies⁶².

9.1 Ecological Harvesting

This procedure meant to create controlled harvesting procedures; to encourage agroforestry for the production of medicinal ferns; to involve local populations and provide incentives for sustainable practices; and to develop mechanisms for certifying materials sourced responsibly⁶³.

9.2 Indigenous Knowledge

Ethnobotanical study, bioprospecting, cultural recognition, and biodiversity conservation are all aided by the documentation of traditional usage^{64, 65}.

10. Future Prospects and Conclusion

Pteridophytes have long served traditional medicine for treating inflammation, infections, and tumors. Despite this, their phytochemistry and pharmacology remain underexplored compared to angiosperms. Most species have not yet been chemically profiled or bioassayed. Future studies should concentrate on the following areas: isolating and characterizing novel bioactive compounds; comprehending biosynthetic pathways; creating phytopharmaceuticals through computational drug design; combining biochemical research with ethnobotanical knowledge; and sustainable conservation and cultivation to stop biodiversity loss. Pteridophytes protection guarantees the survival of ecologically significant species and maintains access to essential therapeutic resources.

Acknowledgements

The authors express gratitude to Professor Ina Aditya Shastri, Vice Chancellor of Banasthali Vidyapith, Rajasthan, for providing invaluable support and encouragement. Additionally, they would like to acknowledge the networking support provided by DST's FIST program at the Department of Bioscience and Biotechnology and the Bioinformatics Centre, which DBT funded.

Author contributions

SS –Research concept and design, **S** –Collection and assembly of data, Data analysis and interpretation, writing the article, **SS, S** –Critical revision and final approval of the article.

Data Availability

Not Applicable.

Conflicts of interest

The authors declare that there are no conflicts of interest related to this article. No ethical issues

References

1. Albuquerque UP, Araújo TAS, Ramos MA, et al. How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil. *Biodivers Conserv.* 2009;18(1):127-150. <https://doi.org/10.1007/s10531-008-9463-8>.
2. Srivastava JL, Jain Seema, Dubey Abhlasha. Ethnomedicine for anti- fertility used by tribals in Bastar district of Madhya Pradesh. In: Ethnobotany and Medicinal Plants of Indian Sub-continent. Scientific Publisher, Jodhpur. 2000; 97e:300.
3. Ranil RHG, Bussmann RW. Potential uses of lycophytes and ferns in Sri Lanka: an ethnopteridological perspective. *Ethnobot Res Appl.* 2021;21(36):1-11. <https://doi.org/10.32859/era.21.36.1-11>.
4. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. *Am J Bot.* 2004; 91(10):1582-98. <https://doi.org/10.3732/ajb.91.10.1582>
5. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. A classification for extant ferns. *Taxon.* 2006; 55(3):705–731. <https://doi.org/10.2307/25065646>
6. Sessa EB. Evolution and classification of ferns and lycophytes. In: Fernández H, ed. *Current Adv Fern Res.* 2018; 2018:179–200. https://doi.org/10.1007/978-3-319-75103-0_9.
7. Qadir SA, Awlqadr FH, Qadir MH, Qadir AM, Faraj AM, Salih SA, Saeed MN, Arab K, Hosseini SMN. *Adiantum capillus-veneris*: A Comprehensive Review of Its Medicinal Properties, Bioactive Compounds, and Advanced Extraction Techniques. *Food Sci Nutr.* 2025; 13(10):e71118. <https://doi.org/10.1002/fsn3.71118>
8. Semwal P, Painuli S, Painuli KM, Antika G, Tumer TB, Thapliyal A, Setzer WN, Martorell M, Alshehri MM, Taheri Y, Daştan SD, Ayatollahi SA, Petkoska AT, Sharifi-Rad J, Cho WC. *Diplazium esculentum* (Retz.) Sw.: Ethnomedicinal, Phytochemical, and Pharmacological Overview of the Himalayan Ferns. *Oxid Med Cell Longev.* 2021; 2021:1917890. <https://doi.org/10.1155/2021/1917890>
9. Alum EU. The role of indigenous knowledge in advancing the therapeutic use of medicinal plants: challenges and opportunities. *Plant Signal Behav.* 2024; 19(1):2439255. <https://doi.org/10.1080/15592324.2024.2439255>
10. Johnson MAA, Madona CX, Almeida RS, Martins N, Coutinho HDM. In Vitro Toxicity, Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of *Sphaerostephanos unitus* (L.) Holtum. *Antibiotics* (Basel). 2020; 9(6):333. <https://doi.org/10.3390/antibiotics9060333>
11. Baskaran XR, Geo Vigila AV, Zhang SZ, Feng SX, Liao WB. A review of the use of pteridophytes for treating human ailments. *J*

Zhejiang Univ Sci B. 2018; 19(2):85-119. <https://doi.org/10.1631/jzus.B1600344>

12. Das C. Exploring the healing secrets of pteridophytes: An ethno-medicinal review. *International J Herbal Med.* 2024; 12(4): 24-31. <https://doi.org/10.22271/flora.2024.v12.i4a.939>

13. Zouraris D, Graikou K, Vasileiou P, et al. EthnoHERBS: Harnessing traditional herbal knowledge for biodiversity conservation and innovative health solutions. *Comput Struct Biotechnol J.* 2025; 29:85-94. <https://doi.org/10.1016/j.csbj.2025.03.035>

14. Qian H, Zhang J, Jiang MC. Global patterns of fern species diversity: An evaluation of fern data in GBIF. *Plant Divers.* 2022; 44(2):135-140. <https://doi.org/10.1016/j.pld.2021.10.001>

15. Korall P, Pryer KM. Global biogeography of scaly tree ferns (Cyatheaceae): Evidence for Gondwanan vicariance and limited transoceanic dispersal. *J Biogeogr.* 2013; 41(2):402-413. <https://doi.org/10.1111/jbi.12222>

16. Barrington DS. Ecological and historical factors in fern biogeography. *J Biogeogr.* 1993;20: 275-280.

17. Testo WL, Sundue MA. Insights into fern species richness and global distribution patterns. *Front Plant Sci.* 2023; 14:1178603. <https://doi.org/10.3389/fpls.2023.1178603>.

18. Krishnan A, Rekha K. Diversity of Pteridophytes in Western Ghats- A Review. *Plant Arch.* 2021; 21(1): 1115-1129. <https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148>

19. Khoja AA, Haq SM, Majeed M, et al. Diversity, Ecological and Traditional Knowledge of Pteridophytes in the Western Himalayas. *Diversity.* 2022; 14(8):628. <https://doi.org/10.3390/d14080628>

20. Roy S, Chaudhuri TK. A comprehensive review on the pharmacological properties of *Diplazium esculentum*, an edible fern. *J Pharmaceut Pharmacol Res.* 2020;3(1). <https://doi.org/10.31579/2693-7247/014>.

21. Ghabru A, Rana N, Chauhan S. Nutraceutical benefits of Himalayan fern (*Diplazium esculentum* (Retz.) Sw.). *Ann Phytomed.* 2022;11(2):82-91. <https://doi.org/10.54085/ap.2022.11.2.9>.

22. Choden K, Verma P. Pteridophytes of Guma and Talo Gewog, Punakha (Bhutan): Pteridophytes of Punakha. *PhytoTalks.* 2025; 1(3):171-184. <https://doi.org/10.21276/pt.2024.v1.i3.3>

23. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. *New Phytol.* 1994; 127(4):617-633. <https://doi.org/10.1111/j.1469-8137.1994.tb02968.x>

24. Guimarães MFM, Messias MCTB. Gender differences in traditional knowledge of useful plants in a Brazilian community. *PLOS ONE.* 2021; 16(7):e0253820. <https://doi.org/10.1371/journal.pone.0253820>

25. Vetter J. Secondary metabolites of ferns. In: Fernández H, Revilla MA, eds. *Current Advances in Fern Research.* Cham: Springer International Publishing; 2018:305-327.

26. Das N, Mishra SK, Bishayee A, Ali ES, Bishayee A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. *Acta Pharm Sin B.* 2021;11(7):1740-1766. <https://doi.org/10.1016/j.apsb.2020.10.012>

27. Rachwal K, Gustaw K. Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics against Foodborne Pathogens. *App Sci.* 2025; 15(12):6774. <https://doi.org/10.3390/app15126774>

28. Pérez-Gálvez A, Viera I, Roca M. Carotenoids and Chlorophylls as Antioxidants. *Antioxidants (Basel).* 2020; 9(6):505. <https://doi.org/10.3390/antiox9060505>

29. Moussa AY, Luo J, Xu B. Insights into chemical diversity and potential health-promoting effects of ferns. *Plants.* 2024;13(18):2668. <https://doi.org/10.3390/plants13182668>

30. Hsu FL, Huang CF, Chen YW, et al. Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models. *Diabetes.* 2013;62(2):628-638. <https://doi.org/10.2337/db11-0554>.

31. Ma X, Tan C, Zhu D, Gang DR, Xiao P. Huperzine A from *Huperzia* species—an ethnopharmacological review. *J Ethnopharmacol.* 2007; 113(1):15-34. <https://doi.org/10.1016/j.jep.2007.05.030>.

32. Zangara A. The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease. *Pharmacol Biochem Behav.* 2003; 75(3):675-86. [https://doi.org/10.1016/s0091-3057\(03\)00111-4](https://doi.org/10.1016/s0091-3057(03)00111-4)

33. Heller S, Seemann RJ, Burgkart R, Obermeier A, Locher H. Lidocaine Shows Significant Antimicrobial Effects Against *Staphylococcus* Species: An In-Vitro Study Comparing Different Combinations of Lidocaine and Clinically Used Injectables, like Steroids and Hyaluronan, in the Context of Arthritis Management. *Biomedicines.* 2025; 13(1):106. <https://doi.org/10.3390/biomedicines13010106>

34. Roy A, Kumar D, Maji RK, et al. Unveiling the mystical and medicinal significance of *Selaginella bryopteris*: a phytochemical exploration of the Ramayana's Sanjeevani Booti. *Int J Sci Res Technol.* 2025; 2(6), 115-133. <https://zenodo.org/records/15581125>

35. Lai HY, Lim YY. Antioxidant Properties of Some Malaysian Ferns. *Int Proc Chem Biol Environ Eng.* 2011; 20: 8-12.

36. Vetter J. Secondary metabolites of ferns. In: Fernández H, Revilla MA, eds. *Current Advances in Fern Research.* Cham: Springer International Publishing; 2018:305-327.

37. Zheng X, Zhang X, Zeng F. Biological Functions and Health Benefits of Flavonoids in Fruits and Vegetables: A Contemporary Review. *Foods.* 2025;

14(2):155.
<https://doi.org/10.3390/foods14020155>

38. Hunyadi A, Martins A, Danko B, Chang FR, Wu YC. Protoflavones: a class of unusual flavonoids as promising novel anticancer agents. *Phytochem Rev.* 2014;13(1):69-77.
<http://dx.doi.org/10.1007/s11101-013-9288-2>

39. Ibadullayeva SJ, Movsumova NV, Shiraliyeva G, Askerova NA, Mammadova HC. Pteridophytes: Ethnobotanical use and active chemical composition. *Indian J Tradit Knowl.* 2022; 21(2):353-359.

40. Al-Mijalli SH, Mrabti HN, Ouassou H, et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of *Arbutus unedo* L. and *Laurus nobilis* L. Essential Oils. *Life* (Basel). 2022; 12(11):1876. <https://doi.org/10.3390/life12111876>

41. Szypula WJ, Wileńska B, Misicka A, Pietrosiuk A. Huperzine A and Huperzine B Production by Prothallus Cultures of *Huperzia selago* (L.) Bernh. ex Schrank et Mart. *Molecules.* 2020; 25(14):3262. <https://doi.org/10.3390/molecules25143262>

42. Ding ZT, Fang YS, Tai ZG, et al. Phenolic content and radical scavenging capacity of 31 species of ferns. *Fitoterapia.* 2008; 79(7-8):581-3. <https://doi.org/10.1016/j.fitote.2008.01.011>

43. Bandyopadhyay A, Dey A. Medicinal pteridophytes: ethnopharmacological, phytochemical, and clinical attributes. *Beni-Suef Univ J Basic Appl Sci.* 2022; 11: 113. <https://doi.org/10.1186/s43088-022-00283-3>

44. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. *Arch Toxicol.* 2023; 97(10):2499-2574. <https://doi.org/10.1007/s00204-023-03562-9>

45. Anand U, Tudu CK, Nandy S, et al. Ethnodermatological use of medicinal plants in India: from ayurvedic formulations to clinical perspectives—a review. *J Ethnopharmacol.* 2022; 10(284):114744. <https://doi.org/10.1016/j.jep.2021.114744>

46. Banerjee RD, Sen SP. Antibiotic activity of pteridophytes. *Ecol Bot.* 1980; 34(3):284-298.

47. Baskaran X, Jeyachandran R. Evaluation of antioxidant and phytochemical analysis of *Pteris tripartita* Sw., a critically endangered fern from South India. *J Fairy Lake Bot Gard.* 2010; 9(3):28-34.

48. Benjamin A, Manickam VS. Medicinal pteridophytes from the Western Ghats. *Indian J Tradit Knowl.* 2007; 6(4):611-618.

49. Singh M, Singh N, Khare PB, Rawat AKS. Antimicrobial activity of some important *Adiantum* species used traditionally in indigenous systems of medicine. *J Ethnopharmacol.* 2008; 115(2):327-329.
<https://doi.org/10.1016/j.jep.2007.09.018>

50. Parihar P, Bohra A. Antifungal efficacy of various pteridophytic plant part extracts: A study in vitro. *Adv Plant Sci.* 2000; 15:35-38.

51. Mandal A, Mondal FLS, Amal. Studies on antimicrobial activities of some selected ferns and lycophytes in Eastern India with special emphasis on ethno-medicinal uses. *Afr J Plant Sci.* 2011; 5(7): 412-420.

52. Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. *Int J Mol Sci.* 2024; 25(6):3264. <https://doi.org/10.3390/ijms25063264>

53. Tomšík P. Ferns and lycopods—a potential treasury of anticancer agents but also a carcinogenic hazard. *Phytother Res.* 2014; 28(6):798-810. <https://doi.org/10.1002/ptr.5070>

54. Chiu CC, Chang HW, Chuang DW, et al. Fern plant-derived protoapigenone leads to DNA damage, apoptosis, and G(2)/M arrest in lung cancer cell line H1299. *DNA Cell Biol.* 2009; 28(10):501-6.
<https://doi.org/10.1089/dna.2009.0852>

55. Qian ZM, Ke Y. Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer's Disease? *Front Aging Neurosci.* 2014; 6:216. <https://doi.org/10.3389/fnagi.2014.00216>

56. Desilets AR, Gickas JJ, Dunican KC. Role of huperzine a in the treatment of Alzheimer's disease. *Ann Pharmacother.* 2009; 43(3):514-8. <https://doi.org/10.1345/aph.11402>

57. Goswami HK, Sen K, Mukhopadhyay R. Pteridophytes: evolutionary boon as medicinal plants. *Plant Gen Res.* 2016; 14(4):328-355. <https://doi.org/10.1017/S1479262116000290>

58. Qian H, Kessler M, Vetaas OR. Pteridophyte species richness in the central Himalaya is limited by cold climate extremes at high elevations and rainfall seasonality at low elevations. *Ecol Evol.* 2022; 12(5):e8958. <https://doi.org/10.1002/ece3.8958>

59. Krömer T, Batke SP. Epiphytic Plants: Perspective on Their Diversity, Distribution, Systematics and Conservation in the Changing Environment. *Plants* (Basel). 2025 Jul 23; 14(15):2265. <https://doi.org/10.3390/plants14152265>

60. Ballesteros D, Pence VC. Fern conservation: spore, gametophyte, and sporophyte ex situ storage, in vitro culture, and cryopreservation. In: Fernández H, Revilla MA, eds. *Current Advances in Fern Research.* Cham: Springer International Publishing; 2018:227-249.

61. O'Donnell K, Sharrock S. Botanic Gardens Complement Agricultural Gene Bank in Collecting and Conserving Plant Genetic Diversity. *Biopreserv Biobank.* 2018; 16(5):384-390. <https://doi.org/10.1089/bio.2018.0028>

62. Mekonnen AB, Mohammed AS, Tefera AK. Ethnobotanical Study of Traditional Medicinal Plants Used to Treat Human and Animal Diseases in Sedie Muja District, South Gondar, Ethiopia. *Evid Based Complement Alternat Med.* 2022; 2022: 7328613. <https://doi.org/10.1155/2022/7328613>

63. Das C. Exploring the healing secrets of pteridophytes: an ethno-medicinal review. International Journal. 2024; 12(4):24-31. <https://doi.org/10.22271/flora.2024.v12.i4a.939>
64. Alam A. Honoring Botanical Discoveries: Uncovering Nature's Wonders: Botanical discoveries. *PhytoTalks*. 2025; 1(1):1-2. <https://doi.org/10.21276/pt.2024.v1.i1.1>
65. Gharti SD, Nag P, Magar GT, Singh AK. Ethnomedicinal Plants Used in Tharu Community, A Case Study of Rapti Sonari, Western Nepal: Ethnomedicinal Plants Used in Tharu Community. *phytoTalks*. 2025;1(2):143-156. <https://doi.org/110.21276/pt.2024.1.2.8>