

Editorial

Article History

Received: 22.05.2025

Revised: 10.06.2025

Accepted: 17.06.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Das K. Plant epigenetics: What it is and role in herbal field. *PhytoTalks*. 2025; 2(2): 304-306.

Plant epigenetics: What it is and role in herbal field

Kuntal Das

Research Director and Professor, Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore-560090, India

*Corresponding author Email: drkkdsd@gmail.com

Abstract

Plant epigenetics is the study of heritable changes in gene expression that do not involve changes to the DNA sequence itself. These changes are often triggered by environmental conditions and can affect plant development, stress responses, and adaptation. Epigenetics plays a crucial role in how plants regulate gene activity over time and across generations. Unlike animals, plants can pass on epigenetic information more frequently through both mitosis and meiosis. Epigenetics plays a vital role in plant biology by regulating gene expression without altering the DNA sequence. This allows plants to respond flexibly and efficiently to both internal developmental signals and external environmental conditions. In this article, the significance of plant epigenetics is explained in the fields of herbals, drug discovery and applications in crop improvement.

Keywords: Application, DNA, epigenetics, gene expression, plants.

1. Introduction

Plant epigenetics refers to the examination of heritable modifications in gene expression and functionality that do not entail changes to the fundamental DNA sequence. Rather, these modifications are facilitated by biochemical alterations to DNA, histone proteins, and non-coding RNAs, which collectively determine the activation or deactivation of genes. In contrast to genetic mutations, epigenetic modifications are reversible and can be shaped by developmental signals and environmental factors¹. Epigenetic modifications occur through DNA methylation (the process of adding methyl groups to cytosine bases, primarily at CG, CHG, and CHH sites in plants, which generally suppresses gene expression), histone modifications (chemical alterations such as acetylation, methylation, and phosphorylation to histone proteins around which DNA is coiled, influencing the compactness of DNA packaging and gene accessibility), and non-coding RNAs (small RNAs that play a role in silencing transposable elements and regulating gene expression)².

Another aspect of plant epigenetics is epigenetic inheritance, which allows plants to transmit epigenetic marks across generations, even through the somatic cells, a phenomenon that is particularly significant for clonal propagation and adaptation.

In plants, this means that environmental or developmental signals experienced by a parent can lead to epigenetic changes that are stably inherited by offspring, potentially affecting their traits, stress responses, or development³.

2. Importance of Epigenetics:

- **Development:** Controls cell differentiation and organ formation.
- **Stress Response:** Helps plants respond to drought, temperature extremes, and pathogens.
- **In agriculture:** Epigenetic changes can be harnessed for crop improvement, stress resistance, and yield enhancement without genetic modification.

3. Useful tools in Epigenetics:

- **Bisulfite sequencing:** For mapping DNA methylation.
- **ChIP-seq:** For detecting histone modifications.
- **RNA-seq:** To study small RNA involvement.
- **CRISPR/dCas9-based tools:** Emerging for targeted epigenome editing.

4. Mechanisms:

Epigenetics govern gene expression through reversible biochemical modifications that do not change the fundamental DNA sequence. The main mechanisms consist of DNA methylation, where methyl groups are attached to cytosine bases (typically in CG, CHG, and CHH contexts), resulting in transcriptional repression; histone modifications, including methylation and acetylation, which alter the chromatin structure and affect gene accessibility; and non-coding RNAs, especially small interfering RNAs (siRNAs) and microRNAs (miRNAs), which direct DNA methylation and histone modifications to specific genomic regions. Chromatin remodeling represents another crucial epigenetic mechanism that modifies the chromatin structure to control gene expression without altering the DNA sequence. The remodeling of chromatin entails repositioning, ejecting, or restructuring these nucleosomes to render specific DNA regions somewhat accessible to transcriptional machinery. This process is executed by ATP-dependent chromatin remodeling complexes (such as SWI/SNF, ISWI, CHD, and

INO80 families), which utilize the energy from ATP hydrolysis to slide nucleosomes along DNA or completely evict them. These epigenetic modifications are essential for the silencing of transposable elements, the regulation of gene expression throughout development, and the capacity of plants to respond and adapt to environmental stresses. Notably, certain modifications can be reliably passed down through cell divisions and even across generations, facilitating epigenetic memory in plants. In the context of plants, chromatin remodeling plays a significant role in development, the regulation of flowering time, responses to both biotic and abiotic stresses, and the silencing of transposable elements^{4, 5}.

5. Applications of epigenetics in the herbal field and drug discovery:

Epigenetics presents promising opportunities in the realm of herbal medicine by improving the quality, yield, and therapeutic attributes of medicinal plants without modifying their genetic structure. By regulating gene expression related to the biosynthesis of secondary metabolites, epigenetic changes can affect the synthesis of essential phytochemicals such as alkaloids, flavonoids, and terpenoids, which contribute to medicinal properties. Additionally, epigenetic tools facilitate the enhancement of stress resilience in herbs, allowing them to thrive in various environments while preserving their pharmacological effectiveness. Moreover, epigenetic profiling supports the authentication and preservation of rare or endangered medicinal plant species by uncovering distinctive regulatory patterns, and epigenetic breeding methods can be employed to identify superior herbal varieties with improved therapeutic benefits, thus fostering sustainable and accurate production of herbal medicine^{6, 7}.

Not only that, but Epigenetics is also crucial in the realm of drug discovery as it provides innovative targets for therapeutic intervention and enhances our comprehension of disease mechanisms at the level of gene regulation. Alterations in epigenetic modifications are

frequently observed in diseases such as cancer, neurological disorders, and autoimmune conditions, rendering them appealing targets for drug development. By pinpointing these epigenetic alterations, researchers can create epigenetic drugs, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, which specifically counteract abnormal gene silencing or activation⁸. Furthermore, the epigenetic profiling of patient samples bolsters the concept of personalized medicine, facilitating the creation of drugs that are customized to individual epigenetic signatures. In the sphere of herbal or natural compounds, numerous plant-derived molecules are currently being investigated for their potential to influence epigenetic marks, thereby paving the way for new, safe, and effective therapeutics based on epigenetics.

6. Application of Epigenetics in crop improvement

Epigenetics is crucial for enhancing crop improvement by providing innovative methods to improve plant characteristics without modifying the fundamental DNA sequence. By regulating gene expressions through different mechanisms, epigenetics can affect traits including stress tolerance, flowering time, yield, and disease resistance³. By comprehending and manipulating these epigenetic markers, researchers can create crops that are more resilient to environmental challenges such as drought, salinity, and extreme temperatures. Furthermore, epigenetic variation can be utilized to boost genetic diversity in breeding initiatives, even in crops that exhibit limited natural genetic variation. Epigenetic markers can also act as essential instruments in marker-assisted selection, facilitating more accurate and efficient breeding. The incorporation of epigenetic strategies into traditional breeding and biotechnology presents considerable potential for sustainable agriculture and food security.

7. Conclusion:

Plant epigenetics provides a deeper understanding of how gene activity is regulated beyond DNA sequence alone. It opens exciting possibilities for improving agriculture, conserving biodiversity, in herbal field by understanding how plants interact with their environment in a dynamic, adaptable way

and helps in new drug discovery. It is a powerful and dynamic regulatory system that enhances plant adaptability, development, and evolution and bridges molecular biology, development, evolution, and agriculture. Understanding and harnessing epigenetic mechanisms offer promising solutions for sustainable agriculture, especially in the face of climate change and increasing global food demands.

7. Acknowledgements

The author gratefully acknowledges the Mallige College of Pharmacy, #71, Silvepura, Chikkabanaavara Post, Bangalore, India.

8. Data Availability

Not Applicable.

9. Conflicts of interest

Not Applicable.

References

1. Minnebo N, Eynde AV, Bollen M. Epigenetic mechanisms in development, inheritance and disease. *P Belg Roy Acad Med.* 2012; 1: 19-40.
2. Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. *Front Plant Sci.* 2022; 13: <https://doi.org/10.3389/fpls.2022.925688>.
3. Abdulraheem MI, Xiong Y, Moshood AY, Cadena-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. *Plants.* 2024; 13(2):163. <https://doi.org/10.3390/plants13020163>
4. Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. *Front Genet.* 2020; 11: <https://doi.org/10.3389/fgene.2020.613636>.
5. Fatima N, Baqri SSR, Bhattacharya A, Koney-Kwaku NK, Husain K, Abbas A, Ansari RA. Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and Therapy. *Front Genet.* 2021; 12: <https://doi.org/10.3389/fgene.2021.758733>.
6. Maxim I, Isabel B, Magnus IS. Epigenetic mechanisms of importance for drug treatment. *Trends in Pharmacological Sciences.* 2014; 35(8): 384-396. <https://doi.org/10.1016/j.tips.2014.05.004>
7. Wu YY, Xu YM, Lau ATY. Epigenetic effects of herbal medicine. *Clin Epigenet.* 2023; 15(85): <https://doi.org/10.1186/s13148-023-01481-1>
8. Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. *Clin Epigenet.* 2019; 11: 174. <https://doi.org/10.1186/s13148-019-0776-0>

Review Article

Article History

Received: 29.05.2025

Revised: 25.06.2025

Accepted: 28.06.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Khan F. India's Unani System of Medicine: An Age-Old Healing Tradition. *PhytoTalks*. 2025; 2(2): 307-310.

India's Unani System of Medicine: An Age-Old Healing Tradition

Firoz Khan

Associate Professor, Department of Ilmul Saidla (Unani Pharmacy), University College of Unani (Tonk)

Dr. S. R. Rajasthan Ayurved University, Jodhpur, Rajasthan, India

*Corresponding author Email: firoznium@gmail.com

Abstract

Unani medicine entrenched in Greco-Arabic civilisations and deeply rooted in Indian cultural and medical antiquity, characterizes all-inclusive and adapted method to healthcare. Familiarized to India in the 8th century and utilized during the Mughal phase, Unani has progressed into a noteworthy constituent of India's diverse medical system. This old-style system accentuates humoral balance, lifestyle alteration, and natural medications, positioning closely with modern ethics of precautionary and integrative medicine. Nowadays, Unani relishes official acknowledgement under the AYUSH scheme and offers economical healthcare solutions, particularly in underserved societies. Despite its healing significance and historical depth, Unani faces challenges linked to consciousness, calibration, and incorporation with modern medicine. This article focuses the historical development, fundamental principles, existing applications, and forthcoming potential of Unani medicine in India, contending for its revival through general awareness, committed research, dedicated education, funding and policy support.

Keywords: Unani medicine, Ilm-ul-Advia, conventional healing, humoral concept, AYUSH.

1. Introduction

Unani, which translates to "Greek," refers to an ancient Greek medical system that was founded on the four humors and temperaments. Unani medicine acknowledges the physical, mental, emotional, and spiritual factors that contribute to health or illness and holds that each person should oversee their own health. Claudius Galenus of Pergamum, who lived in the second century of the common era, is credited with creating the principles that make up Unani healing. Hakin Ibn Sina, often known as Avicenna, gathered the fundamentals of Unani medicine as a therapeutic system in Persia in 980 CE.

Ajmal Khan, who was born in India in 1868, is subsequently widely regarded as the most important contributor to Unani medicine in India throughout the 20th century¹. Like Western medicine, Unani medicine has its roots in Hippocrates and his disciples. In India, Pakistan, and Persia, the Unani medicine is widely used. England, South Africa, and other nations also practice it. Hikmat and Unani-Tibb are other names for the Unani system.

With origins in Greco-Arabic customs, Unani medicine is an age-old healing system that has thrived in India for millennia and woven itself into the country's diverse medical landscape.

The holistic approach to health known as Unani, or "Ilm-ul-Advia" (the science of medicines), places a strong emphasis on temperament, balance, and the interaction of the body, mind, and environment. With its ability to combine cultural history with therapeutic significance, Unani medicine occupies a special niche in India, where various medicinal systems coexist². Given the escalating expenses and adverse effects of contemporary healthcare, Unani medicine focus on natural medicines, preventive care, and customized therapy presents a strong alternative that merits reexamination and incorporation into the mainstream medical system.

1.1. Four elements of Unani Medicine System

The four elements namely fire, water, earth, and air are the foundation of Unani medicine. All facets of life and the body contain these components. Health results from their balance, whereas illness results from their imbalance. There are similarities between the four elements of Unani medicine and Ayurvedic medicine.

1.2. Four types of temperament

The cornerstone of Unani medicine is the concept of the four temperaments. The four elements plus the characteristics of heat, moisture, cold, and dryness, in particular proportions, make up everything in the cosmos, whether it be a mineral, plant, animal, or human. Every object, chemical, or living thing has an equilibrium state that reflects these attributes, depending on the ratios of these components. "Temperament" refers to the equilibrium of attributes³. The four temperaments are categorized as melancholy (cold and dry), biliary (hot and dry), phlegmatic (cold and moist), and sanguinous (hot and moist). A particular temperament will predominate in each person and organ system. The bodily fluids, commonly referred to as humors, are created from food and beverages and are in charge of preserving temperamental equilibrium. The same characteristics are used to categorize these humors.

1.3. Factors related to lifestyle

Disease can be avoided and health preserved by selecting and controlling lifestyle factors. The following lifestyle factors are suggested by Bhikha⁴:

1.3.1. Drinks and food: Consuming enough water and food on a regular basis to keep you hydrated and in balance with your temperament.

1.3.2. Breathing in and out air in the environment: Modifying your way of living to suit the weather, making sure the air you breathe is pure,

and making sure your lungs are functioning at their best.

1.3.3. Rest and movement: Frequent exercise that fits your personality and lifestyle, together with adequate downtime and relaxation.

1.3.4. Sleep and awakening: Feeling alert during the day and obtaining the recommended quantity of undisturbed, high-quality sleep.

1.3.5. Feelings and emotions: Feeling and expressing emotions in a healthy way.

1.3.6. Retention and Elimination: Effective elimination on a regular basis. While the retention of bodily waste may cause harm in the body.

2. Unani evaluation and diagnosis

Through questioning, tongue and pulse examinations, and urine and stool investigations, the disease of the humors is diagnosed. A person's temperament and humors are used to rule out their diagnosis. Additionally, diseases are categorized based on the temperament in which they appear. Unani treatment aims to support the body's inherent healing capacity and balance the four humors. A crucial initial step in resolving a humoral imbalance is addressing lifestyle issues, such as proper meal adoption and selection. Several herbal formulations are used to "ripen" and subsequently "purge" the offending humor if the problem is more severe⁴.

3. India's Historical Foundations and Development

Greek physicians like Hippocrates and Galen are credited for originating unani medicine, which was further developed by Persian and Arab intellectuals like Ibn Sina (Avicenna). Unani, which was brought to India by Arab traders in the eighth century and established during the Mughal era, flourished in a culture that was already deeply rooted in Ayurveda and other native customs⁵. A syncretic medical culture was fostered by Mughal patronage, which resulted in the translation of classical works into Persian and Arabic and the founding of organizations such as the Dawakhana (pharmacy). Hakims or Unani practitioners, were essential to Indian healthcare during the 19th century, providing services to both the aristocracy and the public.

The Indian government now recognizes Unani as one of the official systems under AYUSH, which stands for Ayurveda, Yoga & Naturopathy, Unani, Siddha, and Homeopathy⁶. Its institutional presence is highlighted by organizations such as the National Institute of Unani Medicine (NIUM)⁷ in Bengaluru and the Central Council for Research in Unani

Medicine (CCRUM)⁸. The system is available in both urban and rural areas of India, especially in states like Uttar Pradesh, Delhi, and Hyderabad, and has more than 40 Unani colleges and thousands of registered practitioners.

4. Guidelines and Procedures

The foundation of Unani medicine is the idea that a person's temperament and health are determined by their four humors: blood, phlegm, yellow bile, and black bile. An imbalance of these humors causes disease, and the goal of treatment is to bring the body back into balance through nutrition, lifestyle, herbal remedies, and treatments like regimental therapy (Ilaj-bil-Tadbeer), which involves hydrotherapy, massage, and cupping. Unani's diagnostic methods, which include urine analysis and pulse reading, demonstrate a thorough comprehension of the body's signals and are customized for each patient's particular constitution.

The extensive pharmacopeia of the system includes treatments derived from plants, minerals, and animals. Decoctions, powders, and oils are common therapies; they are frequently made with careful regard to traditional formulae like Majoon and Khamira. To address chronic illnesses like diabetes, arthritis, and respiratory ailments, Unani's emphasis on prevention—through dietary and lifestyle changes—resonates with contemporary health trends.

5. The Significance of Unani in Contemporary India

Unani provides accessible and reasonably priced healthcare solutions in a nation where access to treatment is still unequal, especially for marginalized people. It is affordable due to its use of locally grown herbs and non-invasive treatments, and its all-encompassing strategy fits in with the growing interest in integrative medicine around the world. For example, Unani remedies for digestive problems, skin conditions, and stress-related illnesses have become more and more popular, frequently assisting allopathic care⁹.

Furthermore, Unani foreshadows customized medicine, a new development in contemporary healthcare, with its emphasis on temperament-based treatment. In contrast to mainstream

medicine's one-size-fits-all approach, Unani practitioners provide a nuanced viewpoint by customizing therapies to each patient's humoral balance. Additionally, studies backed by CCRUM have confirmed the effectiveness of Unani remedies for ailments like Vitiligo and psoriasis, enhancing its scientific legitimacy.

6. Obstacles and the Way Forward

Even with its advantages, Unani still has a lot of problems in India. Compared to Ayurveda or Allopathy, the system is not as well-known and is frequently seen as being less strict or antiquated. Due to differences in practitioner training and quality, standardization of Unani medications and procedures is still a challenge. The integration of Unani into mainstream healthcare is also hampered by a lack of robust clinical trials and insufficient collaboration between hakims and allopathic doctors.

Several actions are required to address these problems. First, more money for research and development can help bolster the body of data supporting Unani treatments, which will help skeptics believe in them. Second, in order to increase Unani's popularity, public health campaigns ought to emphasize its advantages, especially its preventive and holistic features. Third, combining Unani instruction with contemporary medical programs may result in professionals who are knowledgeable about both systems, enabling multidisciplinary treatment. Lastly, quality and scalability may be guaranteed by using India's biodiversity to get Unani herbs sustainably¹⁰. Some practitioners have even treated COVID-19 in recent years¹¹, and it has been suggested that this medical approach can also help treat several lifestyle diseases¹².

7. An Appeal for Reviving

Unani medicine is a living practice that has the potential to treat current health issues; it is not only a holdover from India's past. Its focus on prevention, balance, and natural solutions is in line with global trends toward patient-centered, sustainable healthcare. India can leverage Unani's assets to enhance its healthcare environment by allocating resources towards research, teaching, and integration.

Unani serves as a reminder of the knowledge ingrained in the country's cultural past as it negotiates the challenges of contemporary medicine. It is time to accept this age-old system as a partner, not a substitute, in creating a more inclusive and healthy future for India's diverse populace. With the use of science and tradition, today's hakims can set the standard for redefining wellness for future generations.

8. Conclusion

With its deep roots in India's rich cultural and historical heritage, the Unani medical system has endured as a pillar of holistic care. To treat the body and mind as a harmonious whole, Unani integrates herbal treatments, therapeutic techniques, and lifestyle changes, drawing inspiration from ancient Greek, Persian, and Arab traditions. Unani, which has been practiced for centuries in India, is still a vital component of the country's healthcare system and provides alternatives to traditional medicine, particularly in the treatment of chronic and lifestyle-related illnesses. Unani medicine's tenacity in the face of contemporary difficulties is evidence of its continuing applicability. The Unani system can keep improving people's health and well-being worldwide by accepting scientific research, using contemporary technologies, and raising awareness. It is evident that the age-old practice of Unani healing is a dynamic, developing field with much to offer in the fast-paced, health-conscious world of today rather than merely being a holdover from the past.

The Unani system is positioned to play a crucial role in developing a more comprehensive and balanced approach to healthcare as India works toward the merging of traditional and contemporary medicine. It serves as a reminder that knowledge from the past can greatly influence the direction of medicine in the future.

9. Acknowledgements

The author gratefully acknowledges the Department of Ilmul Saidla (Unani Pharmacy), University College of Unani (Tonk) affiliated to Dr. S. R. Rajasthan Ayurved University, Jodhpur, Rajasthan, India for their support.

10. Data Availability

Not Applicable.

11. Conflicts of interest

Not Applicable.

References

1. Magner LN. *A History of Medicine*. Dekker, New York, 1992.
2. Freeman L. *Mosby's Complementary & Alternative Medicine, a Research-Based Approach*, 2nd edition. Mosby, Philadelphia, 2001.
3. Bhikha R. *4 Temperaments, 6 Lifestyle Factors*. Ibn Sina Institute of Tibb, South Africa, 2006.
4. Bhikha R, Glynn JP. *Tibb: The Science of Medicine and the Art of Cure*. Ibn Sina Institute of Tibb, South Africa, 2007.
5. Nasr SH. *Science and Civilization in Islam*. Harvard University Press. 2006. Pp. 1-386
6. Ministry of AYUSH. (2022). *Unani System of Medicine*. Government of India. 2022. <https://www.ayush.gov.in>
7. NIUM Bengaluru. *National Institute of Unani Medicine – Institutional Overview*. 2023. <https://nium.in>
8. Central Council for Research in Unani Medicine (CCRUM). (2023). *Annual Report 2022-23*. Ministry of AYUSH, Government of India. 2023. <https://ccrum.res.in>
9. Iva Lloyd. *Traditional and complementary systems of medicine (Chapter 2)*, Editor(s): Iva Lloyd, *The Energetics of Health*, Churchill Livingstone, 2009; 13-27. <https://doi.org/10.1016/B978-0-443-06955-0.00002-6>.
10. Ahmad S, Khan MA. *Unani Medicine in India: Its Origin and Contemporary Status*. *Journal of Ethnopharmacology*, 2019; 238: 111834. <https://doi.org/10.1016/j.jep.2019.111834>
11. Khan F, Siddiqui A. *Overview: Unani-Dieta and pharmacotherapy as immuno modulator and prophylaxis for Covid-19*. *Int J Unani Integ Med*. 2020; 4(2):20-29. <https://doi.org/10.33545/2616454X.2020.v4.i2a.129>
12. Jahan N, Akhtar J, Khan AA. *Prevention and management of lifestyle diseases through unani system of medicine*. *Int J Unani Integ Med*. 2020;4(2):01-04. <https://doi.org/10.33545/2616454X.2020.v4.i2a.125>

Research Article

Article History

Received: 26.05.2025

Revised: 17.07.2025

Accepted: 21.07.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions Information is available at: https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Bhatt A, Jishtu V, Tripathi YC, Varshney VK. Optimization of Natural Colorant Extraction from the Fruit Peels of Wild Pomegranate. *PhytoTalks*. 2025; 2(2): 311-317.

Optimization of Natural Colorant Extraction from the Fruit Peels of Wild Pomegranate

Anjali Bhatt¹, Vaneet Jishtu², Y.C. Tripathi¹, V. K. Varshney¹

¹Chemistry and Bioprospecting Division, ICFRE- Forest Research Institute, Dehradun (Uttarakhand), India.

²Forest Ecology & Climate Change Division, Himalayan Forest Research Institute, Shimla

*Corresponding author Email: vinay.varshney5@gmail.com

Abstract

Punica granatum var. daru, commonly referred to as wild pomegranate, is widely distributed across Himalayan region and is characterized by its sour flavoured arils (anardana). A large quantity of fruit peels generates during the anardana production, which are traditionally used for various herbal and tanning purposes. These biowaste peels are a rich in polyphenolics and other bioactive constituents. Despite of its phytochemical richness and traditional values, limited research has focused on the valorisation of its fruit peel waste, especially for natural dye extraction. To validate its traditional claim, present study aimed at the valorisation of underutilized fruit peels of wild pomegranate through protocol optimization for extraction of natural colorant. The influence of three critical parameters including material to liquor Ratio (MLR), pH, and time on the optical density were systematically examined. Additionally, biochemical parameters such as total tannin and flavonoid content were assessed. The optimum extraction conditions were determined to be an MLR of 3 g/100 mL, pH 3, and time of 15 minutes, under which a reddish-brown dye with optical density 1.41 was obtained with the yield of 18.33%. Biochemical parameters including total tannin content (TTC), and total flavonoid content (TFC) were also found 0.28%, and 0.14%, respectively. The extracted dye imparted various shades of yellowish-brown when applied to different textile substrate. This is first time report that highlights a sustainable and eco-friendly approach for the valorisation of such biowaste, with promising implications for its integration into large scale sectors such as textiles, nutraceuticals and pharmaceuticals.

Keywords: Optimization, natural dye, bioactive compounds, flavonoids, tannins, wild pomegranate.

1. Introduction

Excessive use of synthetic dyes results in significant environmental constraints as well as various health hazards, including carcinogenicity, organ damage, and potentially life-threatening health complications¹. To overcome these obstacles, it is necessary to find better natural coloring alternatives with sustainable extraction processes for colorant that optimize energy, time, and chemical consumption, providing the colorant with high absorbance and yield^{2, 3, 4}. The advantages of natural dye extraction are cost effective, renewable, and non-carcinogenic and have no allergic reaction on skin.

Wild pomegranate (family *Punicaceae*), also known as daru, dadim, or darmu (Figure 1). It is a deciduous thorny shrub or tree reaching heights of 8 to 10 meters native to Central Asia, Iran, and Turkmenistan to northern India at 900 to 1800 masl⁵. It is widely distributed across mid-hill regions of Himachal Pradesh, Jammu and Kashmir, and Uttarakhand states in India⁶. This variety of pomegranate is distinguished from its cultivars due to its sour flavored arils known as anardana. During the processing of anardana, a large quantity of biowaste fruit peels is generated that remains underutilized. Fruit peels have traditionally been utilized in herbal applications and tanning to obtain yellow, brown, or darker shades due to their coloring properties. They were also used in dyeing leather and preparing ink for writing on takhti by school children^{7,8,9}. The coloring ability of daru is due to the presence of an abundant quantity of chemical compounds, including phenolics (mostly hydrolyzable tannins, flavonoids, anthocyanins). These metabolites, notable polyphenols, are of particular interest from a nutraceutical perspective because of their antioxidant potential and resultant health advantages such as preventing various ailments, such as inflammation, cancer, diabetes, cardiovascular disease, and neurodegeneration¹⁰.

Figure 1: a. Shrub, b. fruits of *Punica granatum* L. (wild pomegranate)

Despite the presence of bioactive compounds and traditional use of wild pomegranate peels, there is an evident research gap in scientific research focused on developing an efficient and optimized extraction protocol for natural colorant from biowaste fruit peels of daru variety. Moreover, empirical validation of traditional claims regarding their dying properties is limited. Therefore, the present study aims to extract a natural colorant from the peels of wild pomegranate using a classical

extraction method, optimizing parameters such as MLR, pH, and extraction time to achieve maximum optical density. Additionally, biochemical parameters, including total tannin and flavonoid contents responsible for coloration, are also evaluated. These underutilized fruit peels can be a potential alternative for synthetic colorant that can be used in various nutraceutical and pharmaceutical industries.

2. Materials and Methods

2.1 Plant material and Chemicals

The wild pomegranate fruit peels (biowaste) were procured from the Himalayan Forest Research Institute (HFRI), Shimla, sourced from the Kariyali region of Himachal Pradesh. The peels were thoroughly washed, lyophilized and pulverized into fine powder, which was subsequently stored into airtight containers at -20°C until further analysis. Analytical grade reagents including aluminium trichloride, citric acid, anhydrous sodium carbonate, ferrous chloride, Folin–Ciocalteu reagent, gallic acid, quercetin, potassium sodium tartrate tetrahydrate were obtained from Merck (India).

2.2 Extraction of the colorant

Optimization of natural dye extraction method in cultivated pomegranate has been previously reported in Sinha et al.¹¹, and Lei et al.¹². In contrast, the present study focused on sustainable extraction of dye from wild grown pomegranate. Based on these previous reported studies, an optimized sustainable protocol was developed and applied for extraction process.

In this method, three independent variables including material to liquid ratio (MLR), pH and extraction time were assessed. Optimization was carried out by varying one parameter at a time while keeping the others constant to determine its effect on the optical density (OD) of the extract. Fruit peel samples (1, 2, 3, 4, 5 and 6 g) were extracted with boiled with 100 g distilled water for a period varied from 15-90 minutes at 15 minutes interval under different pH conditions (3, 7 and 9). Citric acid (0.01%), and sodium carbonate (Na_2CO_3 , 0.01%) were used to adjust the pH. The boiling temperature was maintained at 90° C by simmering the burner after reaching boiling water to avoid complete evaporation. The resulting extracts were filtered using Whatman No. 1 filter paper and stored in

amber bottles at 4 °C for further analysis. The optical density of the dye solution was measured at 535 nm using UV-Visible Spectrophotometer. Optical density was calculated using Beer-Lambert law:

$$A = \epsilon \cdot l \cdot c$$

The yield of the extracted dye was also calculated in percentage (%).

2.3 Determination of bioactive constituents

2.3.1 Total tannin content (TTC)

Total tannin content was quantified using Folin-Ciocalteu method with some modifications as described by Lahare et al.¹³. In this method, 1 mL of dye extract was mixed with 5 mL of Folin-Ciocalteu reagent, followed by the addition of 10 mL of sodium carbonate solution. The mixture was incubated for 1.5 hr at room temperature, after

which the absorbance was recorded at 740 nm using a UV-Visible spectrophotometer.

2.3.2 Total flavonoid content (TFC)

The total flavonoid content was estimated using aluminium chloride colorimetric method, as previously reported by Lahare et al.¹³. 1 mL of extract was mixed with 4 mL of distilled water and 0.1 mL of 5% NaNO₂. After 5 minutes, 0.1 mL of 10% AlCl₃ solution was added, followed by 2 mL of 1 M NaOH after another 6 minutes. The final volume was adjusted to 10 mL with distilled water, and the absorbance was measured at 510 nm.

The results were expressed in percentage (%). Standard calibration curve of quercetin and tannin acid are displayed in Figure 2.

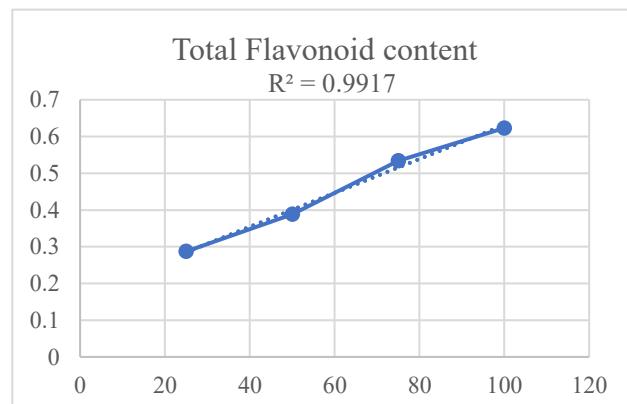
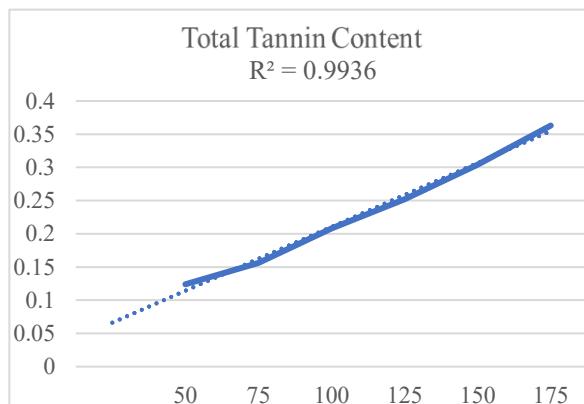



Figure 2. Standard Calibration Curve of TTC and TFC of Extracted Colorant

3. Results and Discussion

The experimental data generated during optimization for MLR, pH and time is presented in Table 1a and Table 1b, respectively. The optimized natural dye extraction protocol yielded a colorant with enhanced optical density, yield and extraction efficiency compared to previously reported methods. This indicates a significant improvement in both methodology and dye quality, areas that were underexplored in prior studies.

3.1 Optimization of Extraction Parameters

A total of two protocols were evaluated namely, Sinha et al.¹¹, Lei et al.¹² and the optimized method developed in the present study. The previously reported protocols failed to simultaneously achieve both maximized optical density and dye yield. However, the protocol optimized in this study

utilized energy efficient and sustainable reagents and solvents to extract a reddish-brown dye with high optical density and yield. The optimal extraction conditions were determined to be MLR of 3 g/100 mL, pH 3 and extraction time of 15 minutes, resulting in the highest recorded optical density of 1.41 and yield of 18.33%. The yield found superior to reported literature 0.64%¹¹ and 17.4%¹². The enhanced performance under these optimized conditions may be attributed to both individual effect and synergistic interaction among the three independent variables. A linear increase in MLR may be attributed to an increment in optical density, consistent with previous findings by Tabaraki et al.¹⁴, which suggest enhanced mass transfer kinetics during the process.

In contrast, both pH and time showed a distinct behavior when compared to the trends observed in the MLR model. Initially, the optical density increased with time and decreasing pH, followed by a decline. This can be explained by the pH sensitive nature of natural colorants, high alkalinity often leads to colorant degradation, while extreme acidic conditions may hinder tannin hydrolyzation, both of which results in reduced optical density¹⁵. This behavior observed in extraction time and pH may be attributed to the attainment of a saturation point, beyond which the diffusion of colorant compounds reaches to equilibrium, resulting in no significant increase in optical density, even when the extraction is continued at a constant temperature of 90 °C and after a time duration of 15 minutes.

Overall, lower MLR and shorter extraction time were chosen, making the optimized method not only energy-efficient but also cost-effective, eco-friendly, and scalable. These attributes make it a promising sustainable alternative for natural dye applications in large scale industries including textiles, nutraceuticals and pharmaceuticals.

Table 1a. Experimental Data of Optical Density

MLR and pH			
MLR	pH		
	3	7	9
1g	0.536	0.482	0.697
2g	0.847	0.841	1.030
3g	1.410	1.291	1.266
4g	1.411	1.231	1.234
5g	1.412	1.244	1.244
6g	1.413	1.211	1.290

Table 1b. Extraction Time

Time	Optical density
15	0.211
30	0.211
45	0.214
60	0.217
75	0.217
90	0.218

3.2 Functional performance of Extracted Dye

The qualitative functional performance of the extracted dye was assessed through its application on textile dying. The evaluation parameters included appearance, color strength (K/S) and

absorbance. The dying procedure was performed sequentially as mentioned below:

3.2.1 Scouring of Fabric

Scouring was performed to remove impurities and enhance dye absorption. Cotton fabric was treated with a solution containing 0.5 g/L Sodium carbonate and 2 g/L nonionic detergent at 50 °C for 25 minutes, maintaining a MLR of 1:50. Post treatment, the fabric was thoroughly rinsed with tap water and air-dried at room temperature. Before dying and mordanting, the scoured fabric was soaked in clean water for 30 minutes prior to ensure uniform dye uptake.

3.2.2 Dyeing and mordanting

The natural dye extract (0.5%) was applied to silk, cotton, and wool fabrics using alum as a mordant (Figure 3). Three different mordanting techniques were evaluated through pre-mordanting, post-mordanting and simultaneous mordanting. Simultaneous mordanting resulted in dye precipitation and was therefore not recommended for further use. Conversely, pre- and post-mordanting approaches yielded better outcomes. Among these, post mordanting is highly recommended for textile application with the highest color strength (K/S= 12.68). The dye exhibited excellent affinity for silk and wool, likely due to their high protein content which promotes stronger interaction and enhanced dye fixation, resulting in deep and uniform color shades. Nevertheless, cotton, a cellulose fabric, exhibited comparatively lighter shades, but mordanting significantly improved color adherence. The mordant facilitated effective chelation with the dye molecules, producing intense brownish hues on the fabric.

The promising results indicate that the extracted dye is particularly suitable for proteinaceous fibers, while cellulosic fibers like cotton can also be effectively dyed with the aid of mordants. Further studies should include color fastness evaluation to future optimize dyeing applications and expand shade diversity from this natural colorant.

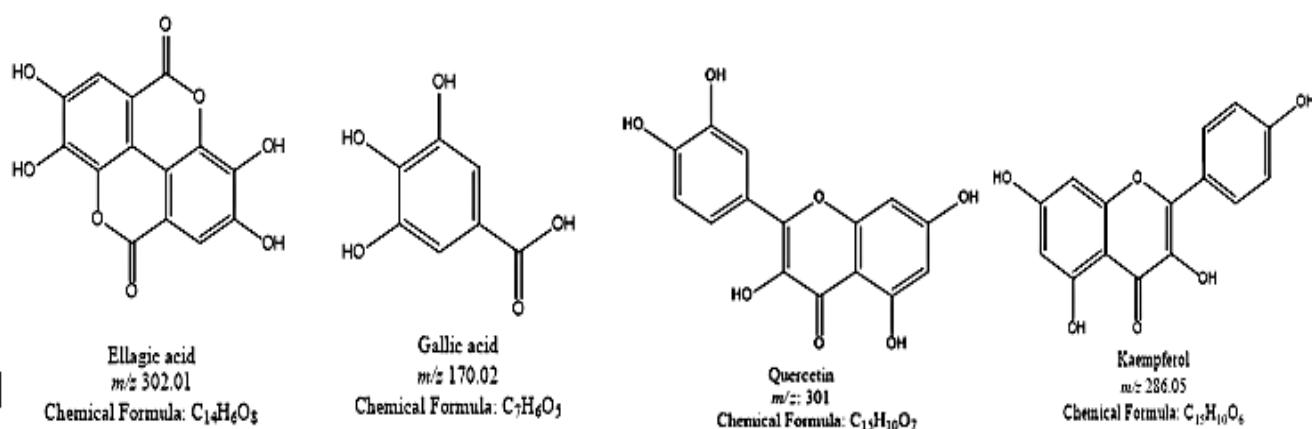


Figure 3. Mordant alum **a.** Wool, **b.** Silk, **c.** Cotton

3.3 Chemical constituents of extracted dye

The fruit peels of wild grown pomegranate are known to be rich in various bioactive constituents, particularly poly-phenolics such as tannins, flavonoids, and phenolic acids¹⁰. These polyphenolics (tannins and flavonoids) are primarily responsible for the color imparting properties of the extracted dye. In this study, TTC and TFC of the dye extract were assessed to evaluate its pigmenting potential. Phytochemical screening confirmed a substantial presence quantity of these color-imparting constituents, suggesting a high coloring potential and strong affinity for textile fibers, especially when used with mordants. Chemical constituents such as ellagic acid, gallic acid, quercetin and kaempferol are known not only for their contribution to the color stability but also for their antioxidant properties, which enhances the functional profile of the dye.

Total tannin and flavonoid content of colorant extracted under the optimized conditions were 0.28% and 0.14%, respectively. These values are consistent with, and in some cases higher than, those reported for cultivated pomegranate variety, such as tannin content of $0.100 \pm 2.49\%$ ¹⁶ and flavonoid content of $0.57 \pm 0.3\%$ ¹⁷. The higher tannin and flavonoid content observed in wild pomegranate peels underscores their phytochemical richness and supports their potential use as a natural source of dye. Moreover, the presence of these bioactive compounds highlights dye's applicability not only in textile coloration but also in bifunctional formulations, including food products, cosmetics, and pharmaceuticals, where natural antioxidant non-toxic pigments are increasingly in demand.

Figure 4. Characteristic unit of major color imparting chemical constituents

4. Conclusion

This study presents the first report on the extraction of a natural colorant from biowaste fruit peels of wild pomegranate using an eco-friendly, non-toxic and energy-efficient heat-assisted classical method. The extraction process was systematically optimized by evaluating the effects of three independent variables including MLR, pH, and extraction time on dye yield and optical density. The optimized conditions, i.e. MLR of 3 g/100 mL, pH 3, and extraction time of 15 minutes, yielded a reddish-brown dye obtained with elevated optical density (1.41) and an appreciable yield (18.33%). Phytochemical evaluation confirmed the presence of significant levels of TTC (0.28%) and TFC (0.14%), which are key contributors to the dye's coloring properties and antioxidant potential. Textile applications revealed strong dye-fiber affinity, especially in protein-based fabrics such as silk and wool. Post mordanting with alum resulted in improved color strength and uniformity, further supporting the dye's suitability for textile applications. However, optimization using statistical methods can provide more robust and valuable insights. Application of dye with different mordants for textiles (including fastness properties evaluation) and food products can also be explored in the near future. Overall, this study highlights the potential of wild pomegranate peel-derived dye as a natural, sustainable alternative to synthetic colorants with promising applications in textiles, nutraceuticals, and pharmaceuticals.

Author contributions

AB: Investigations, Data curation, Formal analysis, conceptualization, manuscript writing; **VJ:** Sample collection; **YCT:** Supervision and guidance; **VKV:** Funding acquisition, Project administration, Resources, Overall Supervision and guidance, Writing - review & editing.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Availability

All data generated or analyzed during this study are included in this published article.

Acknowledgments

The authors are grateful to the Director, ICFRE-Forest Research Institute, Dehradun for

encouragement and support. The financial support was provided by National Authority CAMPA, Ministry of Environment, Forests & Climate Change, Govt. of India, to the Indian Council of Forestry Research & Education (ICFRE), Dehradun for the project "Bioprospecting for Industrial Utilization of Lesser-Known Forest Plants" under the scheme "Strengthening Forestry Research for Ecological Sustainability and Productivity Enhancement." One of the authors (AB) expresses gratitude to the funding agency for awarding the Junior Project Fellowship. Author (AB) is also heartily thankful to Dr. P.K. Verma and Shanza Baig for plant authentication at DD herbarium, FRI, Dehradun.

References

1. Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. *J Environ Manage.* 2024; 353: 120103. <https://doi.org/10.1016/j.jenvman.2024.120103>
2. Adeel S, Saeed M, Abdullah A, Gull Khan S, Kamran M, Zuber M. Ultrasonic assisted improved dyeing of cellulosic fabric using Vat Blue 4. *J Nat Fibers.* 2020; 17(1):1–8. <https://doi.org/10.1080/15440478.2018.1458683>
3. Haws KL, Winterich KP, Naylor RW. Seeing the world through Green-tinted glasses: Green consumption values and responses to environmentally friendly products. *J Consum Psychol.* 2013; 24:336–354. <https://doi.org/10.1016/j.jcps.2013.11.002>
4. Rather LJ, Zhou Q, Ali A, Haque QMR, Li Q. Valorization of Natural Dyes Extracted from Mugwort Leaves (*Folium artemisiae Argyi*) for Wool Fabric Dyeing: Optimization of Extraction and Dyeing Processes with Simultaneous Coloration and Biofunctionalization. *ACS Sustain Chem Eng.* 2020; 8: 2822–2834. <https://doi.org/10.1021/acssuschemeng.9b06928>
5. Holland D, Hatib K, Bar-Ya'akov I. Pomegranate: botany, horticulture, breeding. *Hortic Rev (Am Soc Hortic Sci.).* 2009; 35:127–191. <https://doi.org/10.1002/9780470593776.ch2>
6. Thakur A, Thakur NS, Hamid, Kumar P. Studies on Physico-chemical and Antioxidant Properties of Wild Pomegranate Fruits in Different Locations of Himachal Pradesh. *Int J Curr Microbiol App Sci.* 2018; 7(8): 2842–2850. <https://doi.org/10.20546/ijcmas.2018.708.299>
7. Bakshi P, Bhushan B, Wali VK, Bakshi M, Sharma A, Bhat D. Standardization of Drying Method and Organoleptic Evaluation of Wild Pomegranate (Anardana) Seeds. *World J Agric Res.* 2013; 9:180009. <https://doi.org/10.5829/idosi.wjas.2013.9.5.1750>

8. Mushtaq SM, Gangoo SA. Anardana (dehydrated wild pomegranate arils) as livelihood option for rural communities in Chenab valley of Jammu and Kashmir. *Indian J Hortic.* 2017; 74:306–309. <https://doi.org/10.5958/0974-0112.2017.00063.9>
9. Talebpour F, Veysian M, Malekan F (2018) Evaluation of Dyeing Properties of Carpet Woolen Yarn with Natural and Wild Pomegranate Peel (*Punica granatum*). *J Nat Fibers.* 2018; 15:219–228. <https://doi.org/10.1080/15440478.2017.1325424>
10. Sharma A, Thakur NS. Wild pomegranate (*Punica granatum* L.): A review on physical and chemical attributes of himalayan wild pomegranate fruit. *J Pharmacogn Phytochem.* 2018; 7:4 1518-1524
11. Sinha K, Saha P Das, Datta S. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. *Ind Crops Prod.* 2012; 37:408–414. <https://doi.org/10.1016/j.indcrop.2011.12.032>
12. Lei T, Pan Y, Zhang B, Liu R, Pan Y. Optimisation of ultrasonic-assisted extraction of natural dyes from pomegranate rind using response surface methodology and its characterisation. *Color Technol.* 2021; 137(3), 259-271.
13. Lahare RP, Yadav HS, Bisen YK, Dashahre AK. Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from Durg district, Chhattisgarh, India. *Sch Bull.* 2021; 7:1–6. <https://doi.org/10.36348/sb.2021.v07i01.001>
14. Tabaraki R, Heidarizadi E, Benvidi A (2012) Optimization of ultrasonic-assisted extraction of pomegranate (*Punica granatum* L.) peel antioxidants by response surface methodology. *Sep Purif Technol.* 2012; 98:16–23. <https://doi.org/10.1016/j.seppur.2012.06.038>
15. Salauddin SKM, Rony MIA, Haque MA, Shamim AM. Review on Extraction and Application of Natural Dyes. *Text Leather Rev.* 2021; 4:218–233. <https://www.tlr-journal.com/tlr-4-4-2021-salauddin/>
16. Zarei M, Azizi M, Bashir-Sadr Z. Evaluation of physicochemical characteristics of pomegranate (*Punica granatum* L.) fruit during ripening. *Fruits.* 2011; 66:121–129. <https://doi.org/10.1051/fruits/2011021>
17. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Esther Sendra, Estrella Sayas-Barberá, José A. Pérez-Álvarez. Antioxidant properties of pomegranate (*Punica granatum* L.) bagasses obtained as co-product in the juice extraction. *Food Res Int.* 2011; 44:1217–1223. <https://doi.org/10.1016/j.foodres.2010.10.057>

Research Article

Article History

Received: 29.05.2025

Revised: 28.06.2025

Accepted: 18.07.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information is available at:
https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Verma R, Verma S, Kushwaha P, Singh AK. Impacts of Pulp and Paper Mill Effluent on the Germination and Growth of Gram Seeds. *PhytoTalks*. 2025; 2(2): 318-326.

Impacts of Pulp and Paper Mill Effluent on the Germination and Growth of Gram Seeds

Rahul Verma¹, Savita Verma², Priya Kushwaha¹, Amit Kumar Singh^{1*}

¹Department of Botany, Faculty of Science, University of Lucknow, Lucknow, India

²Department of Environmental Sciences, Faculty of Science, Dr. Ram Manohar Lohia Avadh University, Ayodhya, India

*Corresponding author Email: amitunpg@gmail.com

Abstract

Different types of agro-based industrial effluents are generated from various sectors and discharged into the different water bodies as well as in soil, and these are seriously harming the biota of those areas. Nowadays, to reduce water consumption for irrigation, treated industrial waste is now commonly used. This study was conducted to evaluate the impacts of pulp and paper mill effluents on the growth of gram seeds. The Petri-plate culture technique was conducted to investigate the effects of pulp and paper mill effluents on gram seeds and the concentration of such effluents were taken in different concentrations i.e., 25.0 %, 50.0 %, 75.0 %, and 100.0 %, as well as one as control (distilled water) was used. Different physical-chemical parameters of paper mill effluent i.e., color, pH, temperature, total dissolved solids, suspended solids, chemical and biological oxygen demands, dissolved oxygen, total hardness, total alkalinity, and oil and grease were evaluated. Growth metrics like seedling growth and germination percentage of gram (*Cicer arietinum* L. variety: Pusa 372) seeds were measured on regular basis within 24 hours of interval daily for assessment of growth responses. Results indicated that the positive effect on seeds growth and germination of gram seeds occurred at a lower level of concentration (25 %) of paper mill effluent but at higher concentration of paper mill effluents (75 and 100 %) there were negative impacts on seeds growth and germination.

Keywords: *Cicer arietinum* L., Wastewater, Pollution, Physico-chemical characteristics, Seed germination.

1. Introduction

The sector of pulp and paper mill plays an essential role in the comprehensive developmental activities of any country, and it mainly depends on the lingo-cellulose-based crop residues. In the northern region of India, most of the paper mills use agricultural plant residues for the production of paper and pulp. In the sector of pulp and paper mills, a large amount of water is used for the processing and manufacturing of pulp and paper, resulting in the release of a substantial volume of sewage into different water bodies. According to some estimated data, 273-450 M3 of water is required for the production of per ton of pulp and paper¹, and as a result generating the 300 M3 of effluents² which are generally directly released in different water bodies if without any treatment then the biota and biodiversity of that area get badly affected due to the presence of various toxicants and salts in effluent.

For the preparation of paper in the paper industry, a huge amount of water is used in different stages, such as pulping, pulp washing, and wood preparation, bleaching as well as coating processes. Among all the above processes, the pulping process produces a significant volume of wastewater. Such wastewater, having a higher concentration of biological oxygen demand (BOD), decreased dissolved oxygen (DO) concentration, and increased chemical oxygen demand (COD) due to high microbial activities, disturbed the ecological system in different water bodies. Various studies have shown that treated wastewater, when used at lower concentrations, can be beneficial for the development and growth of crops such as peas, mustard, and rice in different soil types. The treated effluent is used in different crops significantly in order to meet every growth parameter at a level of 30% for the rice crop, 40% for the mustard crop, and 50% for the pea crop, probably sufficient for crop growth.

The effluent released from the industries of paper mills are dark brown and have high concentration of physico-chemical parameters, namely, chemical oxygen demands (COD), biological oxygen demand (BOD), and total solids (TS)^{3,4}. It was observed that firstly alkaline nature of extraction is the primary source of different types of contamination (around 90 % of the entire burden of pollutants) from the paper industries^{4, 5, 6}. About 664 pulp and paper industries are working in India, of which nearly 632 mills are working as agro-based residue and recycling fiber-based techniques with a 7.6-million-ton production capacity⁷. The Indian pulp and paper sector is mainly dependent on water, consuming 100-250 m³ of freshwater per ton of paper manufacturing⁸. Moreover, it produces the matching sources of wastewater water nearly 75–225 m³ of wastewater per ton of paper is released into the soil and different water bodies^{9, 10, 11}. There were 20 different industrial types, such as pulp and paper that fell under the red category due to their potential for environmental pollution¹².

After treatment, the wastewater from paper industries is utilized in irrigation practices for the growth of different crops as organic manure. If the effluent is used without treatment in the irrigation sector, different toxic substances can reduce crop growth and affect the properties of the soil^{13, 14}.

Different studies have been done for the assessment of the impact of wastewater generated from pulp and paper mills on different types of germination of seeds, crop growth¹⁵, and the amount of chlorophyll in maize plants. It was suggested in previous studies that the highest plant growth was observed at a 25% wastewater concentration and at 75% effluent concentration, respectively, which enhanced the concentration of chlorophyll. Impact of paper mill effluent on germination of seed of rice (*Oryza sativa* L.) crops grown in effluent-prone area, percentage of seeds germination and yield of rice crop were comparatively low¹⁶. A study done by Singh et al.¹⁷ concluded that the impact of wastewater on wheat plants resulted in increased chlorophyll concentration, root and shoot biomass growth, and grain yield in rice plants.

Gram (*Cicer arietinum* L.) commonly known as chickpea seeds were taken as test plants seeds because it is an important leguminous crop grown in India and other parts of the world for its high protein and nutritional value. Gram seeds are mainly used for human as well as animal consumption and animal feed. Gram seeds are rich in protein, dietary fiber, and essential vitamins and minerals. Gram crop plants are also used in crop rotation patterns due to their ability to fix the nitrogen content in soil and help in improving the soil fertility. Gram crop plants are typically sown in 'rabi' (winter) season, and it requires well-drained loamy soil and moderate rainfall.

2. Materials and Methods

Experimental setup:

The Petri-plate culture experiment was conducted in laboratory under controlled conditions of environment to investigate the paper mill effluent effects on the growth and germination of gram seeds. For the proper growth of gram seeds in petri-plate, we used cotton beds. Paper mill wastewater is used at four levels, such as 25.0 %, 50.0 %, 75.0 %, and 100.0 %, with control i.e. distilled water. Seed germination and seedling growth were measured daily basis for the assessment of the seed's growth percentage and seedling growth ratio of gram seeds.

Collection of effluent and analysis of physico-chemical parameters:

The sample of pulp and paper mill effluent was collected from outlet of Yash paper mill, Ayodhya

(Faizabad), U.P., India. The samples were collected from an outlet in paper mill industrial area in the clean, sterilized plastic container and stored at 4° C for further analysis, as prescribed by APHA¹⁸. For the assessment of physico-chemical characteristics, such as pH, temperature, total solids, total dissolved solids, total suspended solids, chemical oxygen demand, biochemical oxygen demand, dissolved oxygen, total hardness, total alkalinity, and oil and grease, the use of standard methods prescribed by APHA¹⁸ were followed. The different concentration of pulps and paper mill effluents, i.e., 25.0 %, 50.0 %, 75.0 %, and 100.0 % were prepared by addition of distilled water in the appropriate volume along with a control or blank was prepared by using the distilled water only in petri-plate experiment. The glass petri-plates were pre-sterilized and for seed germination sterilized cotton was used for making seed bed in petri-plate bottom and each petri-plate was marked and covered by its own lid.

Collection of seeds:

Commercially available gram (*Cicer arietinum* L. variety- Pusa: 372) seeds were procured from local market, used for the experiments. Gram seeds of uniform size, color and weight were collected for the best results in our experiments.

Initial growth analysis:

The selected gram seeds were sowed in petri-plate experiment showing the result after 24 hours in petri-plate. We analyzed the viable seed germination on a daily basis and measured the seed growth on also daily basis. We run this experiment for 120 hours from the sowing time and analyze the findings obtained from this experiment.

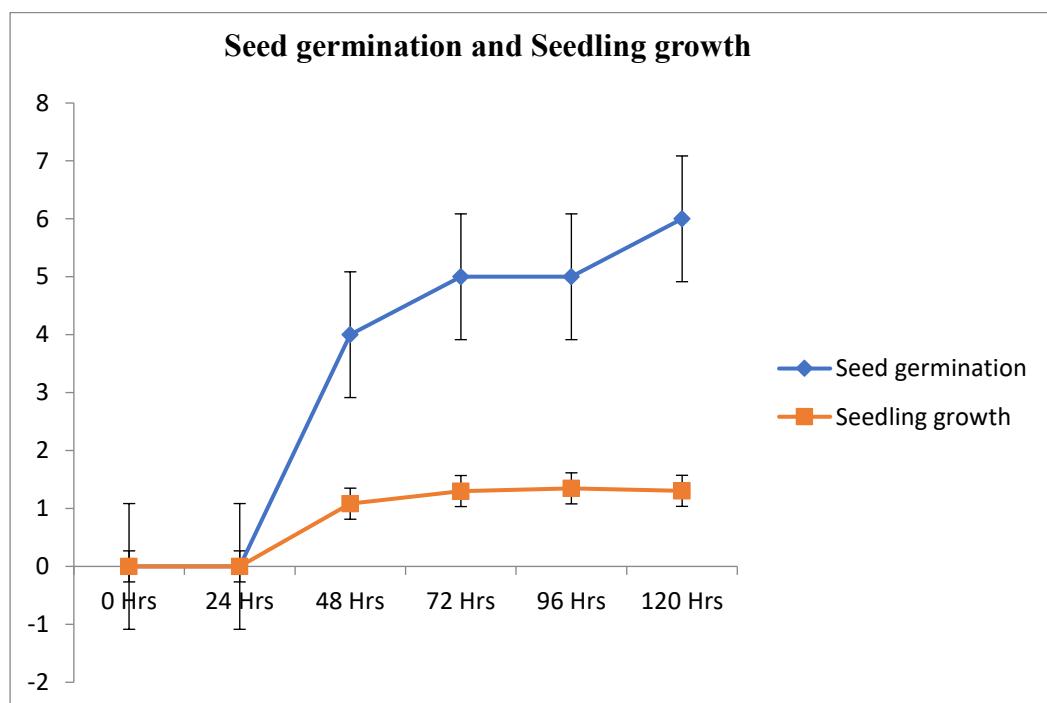
Germination percentage:

The number of seeds germinated in each treatment was observed on daily basis from the sowing time. The total germination percentage was calculated by using the following formula:

$$\text{Germination percentage} = \frac{\text{Total number of seeds germinated}}{\text{Total number of seeds sown}} \times 100$$

Table 1: Results of physico-chemical parameters analysis of pulp and paper mill effluent:

Physico-chemical parameter	Effluent results	Standard
Temperature (°C)	32° C	40°C
pH	7.6	6.5-8.5
DO (mg/L)	2.9±0.8	5-6
BOD (mg/L)	88.75±.95	30
COD(mg/L)	560±8.73	250
Alkalinity (mg/L)	412.88±5.37	600
Hardness (mg/L)	644±5.10	600
TDS (mg/L)	168.9±2.98	2000
TSS (mg/L)	39.54±1.48	100
Oil and grease (mg/L)	Nil	10


Table 2: Seed Germination percentage of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds on different concentrations of paper mill effluent after 24 hours and up to 120 hours of sowing.

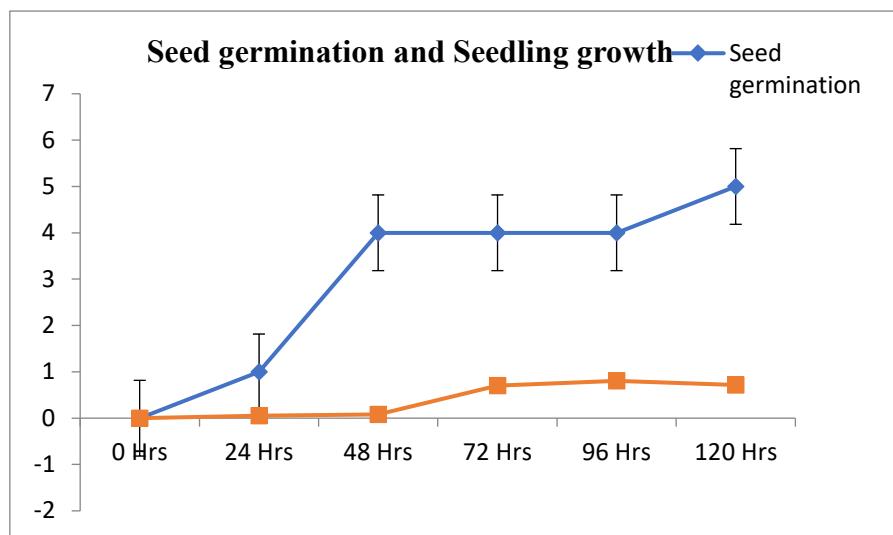
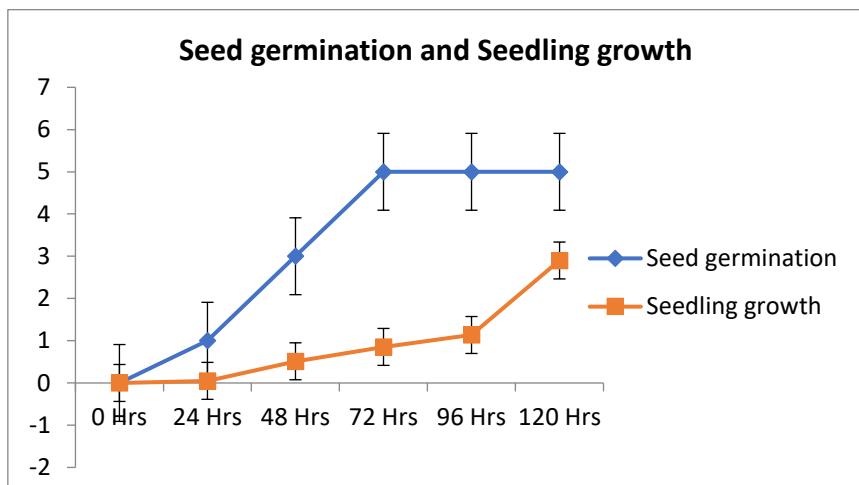
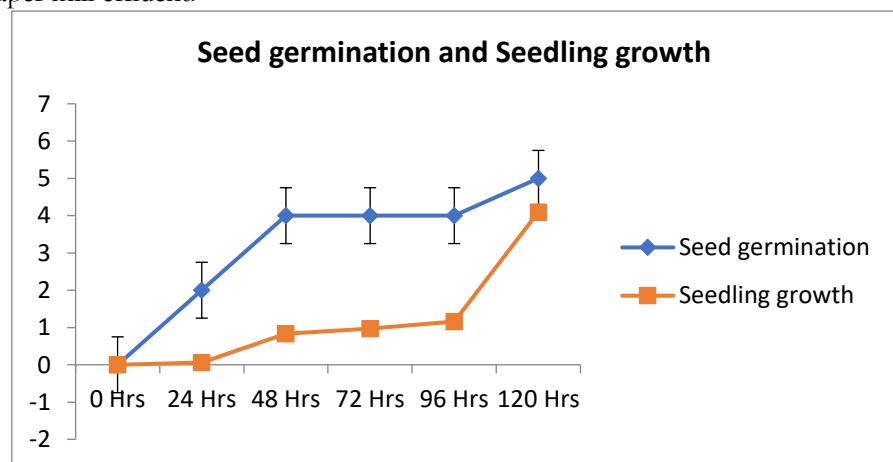
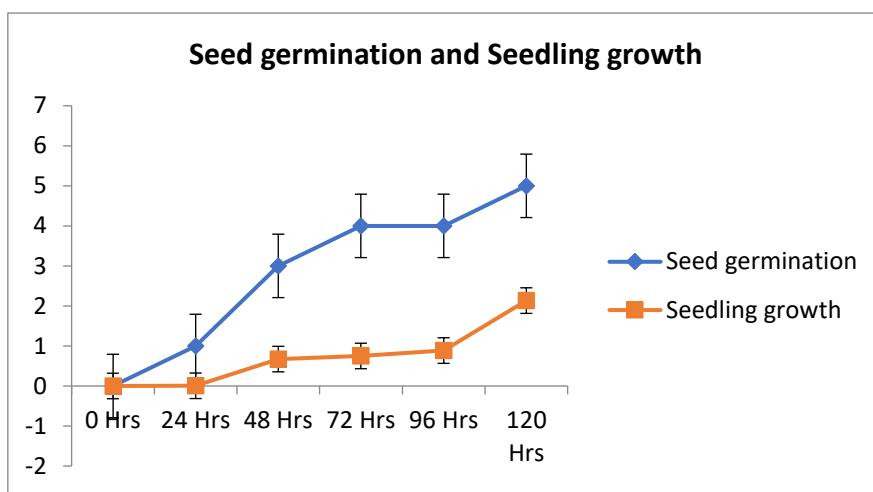

Time interval	Blank	25 %	50 %	75 %	100 %
0 hour	0	0	0	0	0
After 24 hours	0/6	1/6 (16.66%)	1/6 (16.66%)	2/6 (33.33%)	1/6 (16.66%)
After 48 hours	4/6 (66.66%)	4/6 (66.66%)	3/6 (50%)	4/6 (66.66%)	3/6 (50%)
After 72 hours	5/6 (83.33%)	4/6 (66.66%)	5/6 (83.33%)	4/6 (66.66%)	4/6 (66.66%)
After 96 hours	5/6 (83.33%)	4/6 (66.66%)	5/6 (83.33%)	4/6 (66.66%)	4/6 (66.66%)
After 120 hours	6/6 (100%)	5/6 (83.33%)	5/6 (83.33%)	5/6 (83.33%)	5/6 (83.33%)

Table 3: Growth of seedlings of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds in cm, soaked in different concentrations of paper mill effluent after 24 hours and up to 120 hours of sowing.


Time interval	Blank/ 0% effluent and seedling growth (cm)	25 % effluent and seedling growth (cm)	50 % effluent and seedling growth (cm)	75 % effluent and seedling growth (cm)	100 % effluent and seedling growth (cm)
*0 hour	0	0	0	0	0
After 24 hours	0	0.055	0.050	0.060	0.005
After 48 hours	1.083	0.083	0.513	0.833	0.672
After 72 hours	1.301	0.703	0.854	0.971	0.75
After 96 hours	1.347	0.805	1.136	1.16	0.885
After 120 hours	1.305	0.916	2.9	4.1	2.133

(*The comparison time (starting at 0 Hour) and the seedling growth in cm is almost the 0 (Zero) has been reported to be almost '0' in others too, hence the comparative statistical analysis with Control to other hours valued '0' with no specific statistical data with ANOVA was found.)


Graph 1: The graph shows the seedling growth and seed germination of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds in Control or Blank (Only distilled water)


Graph- 2: The graph shows the value of seedling growth and seed germination of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds at 25.0 % of pulp and paper mill effluent.

Graph- 3: The following graph shows the value of seedling growth and seed germination of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds at 50.0 % of pulp and paper mill effluent.

Graph 4: The following graph shows the value of seedling growth and seed germination of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds at 75.0 % of pulp and paper mill effluent.

Graph- 5: The following graph shows the value of seedling growth and seed germination of Gram (*Cicer arietinum* L. variety- Pusa: 372) seeds at 100.0 % of pulp and paper mill effluent.

Seed germination:

For the assessment of seed germination, pre-sterilized glass petri-plates were prepared independently under regulated circumstances in the laboratory, and the experiment was run in triplicate. The petri-plates were kept with sterilized cotton bedding, supplied with paper mill effluent in the concentration of 25.0%, 50.0 %, 75.0 %, and 100.0 % for the experimental setup and use of distilled water as a control or blank. About 10 Gram or 06 seeds were put in each petri-plate following the seed coat rupture. After 24 hours of intervals, the proportions of seeds that germinated and survived were recorded.

Seedling growth:

After the start of seed germination, the growth of seedlings of gram including plumule (embryonic shoot) and radical (embryonic root) length was measured at intervals of 24 hours. Root and shoot length were measured using a metric scale in 'Centimeter' (CM) to determine various time intervals and the effects of pollutant concentration in different percentage found in paper mill effluent.

Results

Physico-chemical analysis:

The analysis of paper mill effluent showed slightly basic pH of 7.6. The effluent of the paper mill showed- Dissolved Oxygen (2.9 mg/L), Biological Oxygen Demand (88.75 mg/L), Total hardness (644.0 mg/L), alkalinity (412.88 mg/L), Total dissolved solids (168.9 mg/L), and traces of oil and

grease. In the presence of higher oxygen-demanding chemicals, the concentration of Chemical Oxygen Demand was 560.0 mg/L.

The impact on seedling growth and seed germination was significant:

The initial period of gram seeds (*Cicer arietinum* L. variety- Pusa: 372) on the growth of different concentrations of wastewater effluent generated from the paper mill i.e., 25.0 %, 50.0 %, 75.0 %, and 100.0 % along with one as control. The present study, showed that the effect of different concentrations of effluent 25.0 %, 50.0 %, 75.0 %, and 100.0 % significantly ($0 < 0.01$) impacted emergence time in comparison to the control.

When the effluent concentration was decreased, then the germination percentage was increased. The highest seed germination of gram seeds (*Cicer arietinum* L. variety- Pusa: 372) was observed at 25.0 % of the wastewater. This type of germination pattern is probably caused by the paper mill toxicant effluents were in diluted concentration with some organic material which can encourage germination. While excess concentrations were entirely preventing or severely suppressing seed germination, because different forms of toxic salts and other toxicants are typically most harmful to the normal growth and development of young plants, but not always at the time of seed germination. The rate of seed germination was slow due to the availability of different toxic substances in the paper mill effluent. Another significant factor preventing seed germination is salinity^{19,20}. Proper hydration of

seeds is crucial for controlling metabolism, as well as for seedling growth and seed germination.

Germination and seedling growth rate at different times:

After 24 hours:

After 24 hours of seeds germination, at different concentrations like; blank (Only distilled water), and 25.0 %, 50.0 %, 75.0 %, 100.0 % of paper mill effluent, showed different phases. In the blank (Only distilled water) after 24 hours, the seed germination was 0/6, and seedling growth was also nil. In 25.0 % of the effluent solution germination percent was 1/6, and seedling growth was 0.055 cm. In 50.0 % of the effluent solution, seed germination was 1/6, and the seedling growth was 0.050 cm. In the solution of 75.0 % of effluent, seed germination was 2/6 and average seedling growth was 0.06 cm, and in 100.0 % of effluent solution, germination was 1/6 and seedling growth was 0.005 cm.

After 48 hours:

After 48 hours of treatment, gram seed germination of the blank was 4/6, and average seedling growth was 1.08 cm; in 25.0 % of the effluent sample, the seed germination was 4/6, and average seedling growth was 0.083 cm; in 50% of the effluent concentration, seed germination was 3/6 and average seedling growth was 0.513 cm. In the solution of 75% of the effluent, seed germination was 4/6 and average seedling growth was 0.833 cm; in 100% of the effluent solution, seed germination was 3/6 and average seedling growth was 0.672 cm.

After 72 hours:

At the time of 72 hours, seed germination of the blank solution was 5/6, and seedling growth was 1.301 cm; in 25% of the effluent solution, seed germination was 4/6, and seedling growth was 7.03 cm. In the 50% of effluent solution, seed germination rate was 5/6 and seedling growth was 0.854 cm; in 75% of effluent solution, seed germination was 4/6 and seedling growth was 0.971 cm; and in 100% of effluent solution, seed germination was 4/6 and seedling growth was 7.03 cm.

After 96 hours:

Seed germination and seedling growth of gram seeds after 96 hours in blank solution were 5/6 and 1.34 cm, respectively. In the 25% effluent solution, the seed germination was 4/6, and seedling growth was 0.805 cm. In the solution of 50% effluent concentration, seed germination was 5/6 and seedling growth was 1.136 cm; in the 75% effluent solution, seed germination was 4/6 and seedling

growth was 1.16 cm; and in the 100% effluent solution, seed germination was 4/6 and seedling growth was 0.885 cm.

After 120 hours:

Seedling stage parameters such as root length and shoot length of the gram seed after 120 hours were recorded. Seed germination in the blank solution was 6/6, and seedling growth was 1.305 cm. In the 25% effluent solution, seed germination was 5/6, and seedling was 2.9 cm. In 75% of the solution, seed germination was 5/6, and seedling growth was 4.1 cm. And in the 100% effluent sample, the seed germination ratio was 5/6, and the seedling growth rate was 2.133 cm.

Discussions

The rate of seed germination was slow due the presence of different high rate of toxic substances in the paper mill effluent. Another significant factor preventing seed germination is salinity^{19, 20}. Proper hydration of seeds is crucial for controlling metabolism, as well as for seedling growth and seed germination. Pulp and paper mill effluents have harmful pollutants and can even not used as organic fertilizers in fields due to presence of some toxic substances²¹. In their study, Medhi et al.²² examined the effects of wastewater from pulp and paper mills on the germination and seedling growth of rice, peas, and mustard. They found that lower concentrations of effluent promoted better growth compared to the control group. In a study, Reddy and Borse²³ investigated the impact of effluent on the germination and seedling growth of *Trigonella foenum-graecum*. They found that these parameters decreased when the concentration exceeded 25%, while both germination and seedling growth improved up to that concentration. Kamlesh and Kidwai²⁴ studied the effects of sugar mill effluent on two fenugreek cultivars, Kasuri and Pusa Bold. Their findings indicated that lower dilutions benefited the initial growth of both plant varieties, whereas higher concentrations of effluent negatively impacted the initial growth parameters. Same results have been reported by us in gram seeds (*Cicer arietinum* L. variety- Pusa: 372) on the growth of different concentrations of wastewater effluent generated from the paper mill situated in Ayodhya (U.P.).

Conclusion

Pulp and paper mills are an important sector in industries and these mills produce a distinct variety of paper for different uses. Paper mill effluent was analyzed for physico-chemical characteristics, and

the results showed that the light brown colour effluent is alkaline in pH, the total hardness, biological oxygen demand, chemical oxygen demand from the treated effluent are also higher in concentrations as compared with Indian standards for water, and dissolve oxygen concentration was also lower. The result of this experiment demonstrated that the retardation of seedling growth and seed germination of gram occurred at high level of toxicants present in high concentration of paper and pulp mill effluent. This study suggested that the treated wastewater has a high concentration of physico-chemical parameters, and other waste is not good for soil health or the production of crops. The normal growth of gram seeds and seedlings is impacted from paper mill effluent. The ratio of germination of seeds demonstrates the sensitivity of seeds in the early phases of development, and the availability of trace metals above the permissible limit in the effluent is a severe concern for the pollution of groundwater and other water resources too. It can be concluded that treated pulp and paper mill effluent should be used in agricultural practices like irrigation purpose instead of directly pouring or mixing into river, canal, other fresh water resources and soil, so that the ground water dependency could be solved and conservation of water should be done for future scenario but the without treated water shouldn't be directly used for irrigation and not to mix with other fresh water resources for other use because it has toxic metallic/nonmetallic elements which could damage environment and further human health.

Acknowledgements

The authors (AKS, RV and PK) are thankful to the Department of Botany, University of Lucknow, Lucknow, for providing essential laboratory facilities to complete this research work and for providing the important literature review regarding this research article. The co-authors (SV) is grateful to Dr. Ram Manohar Lohia Avadh University, Ayodhya, (Faizabad) U.P., India for the required support.

Author's Contribution

RV and SV conducted the experiment and wrote the original draft of the paper. AKS conceptualized and supervised the project, while PK handled the editing and corrections and helped in writing original draft. Additionally, RV, SV, and PK were

involved in the various investigation of the study. All authors have read and agreed to the final version of the manuscript.

Data Availability

All data generated included in this article.

Conflicts of interest

The authors declare that there is no conflict of interest

References

1. Subrahmanyam PVR, Hannmanulu V. Economics of waste water treatment in small paper mills. *IPFTA*. 1976;14:127. <https://doi.org/10.1093/oxfordjournals.oep.a041344>
2. Khanna PK, Mittar D, Marwaha SS, Kennedy JF. Characterization and bioblanching of paper mill effluents. *Biopaper J*. 1990; 10:16.
3. Deshpande AW, Olaniya RS. and Khanna, P. Integration of risk assessment with reliability concept: a case study of a paper mill. *Risk Anal*. 1991; 11(3): 393-397.
4. Kansal A, Siddiqui N, Gautam A. Wastewater treatment of pulp and paper industry: a review. *J Environ Sci Eng*. 2011; 53(2): 203-18.
5. Kirk TK, Jeffries TW, Leatham GF. Biotechnology: applications and implications for the pulp and paper industry. *Tappi J*. 1983; 66(5): 45-51. <https://doi.org/10.2524/jtappij.39.19>
6. Rangan SG. Pollution abatement in the paper industry. In: IPPTA Convention. 1987; 87:141-168.
7. CPPRI. Statistics of the Indian Paper and Newsprint Industry, Central Pulp and Paper Research Institute Saharanpur, 2005, India
8. Singh S. An overview of Indian agro-based paper mills. In: Tewari, P.K. (Ed.), Liquid asset, Proceedings of the Indo-EU workshop on promoting efficient water use in agro-based industries. TERI Press, New Delhi, 2004: 31-33. <http://doi.org/10.3354/cr00857>
9. Ansari PM. Water conservation in pulp and paper, distillery, and sugar industry. In: The Indo-EU Workshop on Promoting Efficient Water Use in Agro-Based Industries, New Delhi, India, 2004.
10. Tewari et al., Efficient water use in industries: Cases from the Indian agro-based pulp and paper mills. *Journal of Environ Mgt*. 2009; 90: 265-273. <https://doi.org/10.1016/j.jenvman.2009.07.006>
11. Thompson G, Swain J, Kay M, Forster CF. The treatment of pulp and paper mill effluent: a review. *Biosour Technol*. 2001; 77(3): 275-86. [https://doi.org/10.1016/s0960-8524\(00\)00060-2](https://doi.org/10.1016/s0960-8524(00)00060-2)
12. CPCB, Delhi. Final document on revised classification of industrial sectors under Red, Orange, Green, and White categories, 2016.
13. Garg VK, Kaushik P. Influence of short-term irrigation of textile mill wastewater on the growth of chickpea cultivars. *Chem Ecol*. 2006; 22(3): 193-200. <https://doi.org/10.1080/02757540500360410>
14. Juwarkar AS, Bhalkar DV, Subrahmanyam PR. Effect of pulp and paper mill wastewater on soil properties. *Indian J Environ Health*. 1987; 29(4): 313-321.

15. Choudhary SK, Jha AN, Srivastava DK. Effect of paper mill effluent on seed germination and seedling growth of maize, *Environ Ecol*. 1987; 5(2):285-287. <https://doi.org/10.1016/C2013-0-10684-8>
16. Dutta SK, CL Boissya. Effect of paper mill effluent on the yield components of rice (*Oryza sativa* L. var Masuri). *Rao Ems Censer*. 2000; 6: 453-457.
17. Singh et al. Assessment of the pulp and paper mill effluent on growth, yield, and nutrient quality of wheat (*Triticum aestivum* L.). *J Environ Biol*. 2002; 23(3): 283-288. <http://doi.org/10.22438/jeb/42/1/MRN-1710>
18. American Public Health Association. Standard methods for examination of water and wastewater, APHA, Washington, DC, 2010, pp. 17.
19. Rajannan G, Oblisami G. Effect of paper factory effluents on soil and crop plants. *Indian J Environ Health*. 1979; 21(2): 120-130.
20. Sahoo S, Mishra PC. Effect of Paper Mills Sludge on Soil Quality and Crop Production. *Recent Adv Ecobiol Res*. 1997; 2: 357.
21. Singh AK, Kumar A, Chandra R. Environmental pollutants of paper industry wastewater and their toxic effects on human health and ecosystem. *Bioresour Technol*. 2022; 20:101250.
22. Medhi UJ, Talukdar AK, Deka S. Effect of pulp and paper mill effluent on seed germination and seedling growth of Mustard (*Brassica campestris*), Pea (*Pisum sativum*) and Rice (*Oryza sativa*) seeds. *Poll Res*. 27(3): 437-442.
23. Reddy PG, Borse RD. Effect of Pulp and Paper Mill Effluent on Seed Germination and Seedling Growth of *Trigonella foenum-graceum* L. (Methi). *J Ind Pollut Control*. 2001; 17: 165-169.
24. Kamlesh, Kidwai MK. Effect of sugar mill effluent on response of Fenugreek (*Trigonella foenum-graecum*) varieties. *IJEAB*. 2016; 1(4): 844-852. <http://dx.doi.org/10.22161/ijeb/1.4.31>

Review Article

Article History

Received: 16.06.2025

Revised: 18.07.2025

Accepted: 22.07.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Baliyan P, Sharma SK. Ethnobotanical Comparison of *Ocimum sanctum* L. and *Croton bonplandianus* Baill.: Insights into their Traditional and Medicinal Uses. *PhytoTalks*. 2025; 2(2): 327-339.

Ethnobotanical Comparison of *Ocimum sanctum* L. and *Croton bonplandianus* Baill.: Insights into their Traditional and Medicinal Uses

Prachi Baliyan¹ and Supriya Kumari Sharma^{1*}

¹Department of Bioscience and Biotechnology, Banasthali Vidyapith (Rajasthan), 304022, India

*Corresponding author Email: supriya.sharma2608@gmail.com

Abstract

Ocimum sanctum L. also referred to as Tulsi, and *Croton bonplandianus* Baill., commonly referred to as Ban Tulsi or Jungle Tulsi, are two powerful medicinal herbs deeply rooted in traditional medicine, especially within the Indian subcontinent. This comprehensive review delves into the ethnobotanical properties and pharmacological activities of these remarkable plants. Tulsi, often hailed as the "Queen of Herbs," has long been revered for its versatile therapeutic characteristics. It is traditionally utilized to address a wide array of health issues, including chronic fever, dysentery, haemorrhage, vomiting, eye disorders, respiratory infections, diabetes, and gastric and hepatic disorders. Furthermore, Tulsi exhibits antifertility, anti-inflammatory, radiation protection, antibacterial, antioxidant, anticancer, as well as antifungal characteristics, making it a truly multifaceted medicinal herb. On the other hand, Jungle Tulsi is sought after for its efficacy in treating skin diseases, hypertension, wounds, diabetes, cancer, constipation, abdominal dropsy, and various infectious disorders. Like Tulsi, Jungle Tulsi also showcases a broad variety of pharmacological activities, that includes antifungal, hepatoprotective, wound healing, antimicrobial, antioxidant, and anti-inflammatory properties. Given pressing challenge of multidrug-resistant microbial strains, the exploration of novel plant-based antimicrobial agents is more crucial than ever. Tulsi and Jungle Tulsi emerge as promising sources due to their broad-spectrum pharmacological activities. However, further research, including clinical trials and mechanistic studies, is essential to fully unravel the therapeutic potential of these herbs and to develop standardized, safe, and effective herbal formulations.

Keywords: Ethnobotany, Pharmacology, Euphorbiaceae, Lamiaceae, Traditional Medicine.

1. Introduction

Throughout history, plants have been a primary source of human medicine as well as sustenance. Approximately 4 billion individuals, or 80% of the population of the world, already utilize herbal remedies as a component of their daily medical regimen¹. Various cultures use locally grown plants to cure common ailments, and these herbal medicines have proven to be remarkably effective over centuries². Certain natural remedies have been shown to work better than traditional allopathic medications. Herbal medicine is the practice of treating human and, occasionally, animal illnesses by using medicinal herbs in different forms, such as extracts, decoctions, or powders. Many people are turning to traditional treatment practices that use the therapeutic properties of herbal medicines for relief due to the drawbacks and adverse effects of some allopathic medications³.

Holy basil, also referred to as Tulsi in Hindi and Sanskrit, has been a prominent member of the family Lamiaceae and is identified scientifically as *Ocimum sanctum* L. The therapeutic qualities of tulsi have been utilized in Ayurvedic medicine for over 3,000 years to treat a range of illnesses.

Tulsi leaf extracts have been used to cure fever, bronchitis, and other ailments, according to Indian medical books. This extensively grown plant is regarded as a vital household plant in India and has been very prestigious in Hinduism. Hindu mythology goes into great lengths to examine the importance, uses, and traits of tulsi⁴. Tulsi is an aromatic shrub that grows to a height of 3 to 5 feet and is often grown in gardens. Its strong flavor and aroma make it extremely valuable to humans. Traditional Ayurvedic medicine often uses Tulsi leaves to cure a range of illnesses, for example, intestinal disorders, common colds, heart problems, headaches, stomach problems, kidney stones, and more. It is especially effective at treating fevers and has been shown to prevent mosquito reproduction and treat intestinal diseases. The adaptable Tulsi plant has many uses, and its leaves are regularly used for their health-restoring qualities and as a sensory stimulant, greatly improving memory acuity⁵. Tulsi is also known to help with respiratory conditions. An excellent remedy for influenza, asthma, as well as bronchitis is a concoction of Tulsi leaves, ginger, and honey. Owing to its many medicinal benefits, tulsi is regarded as a crucial element for improving well-being. Extensive research and empirical investigations have demonstrated the safety of consuming tulsi in a variety of forms, indicating that this small herb is a considerable source of medical benefits. These therapeutic qualities are acknowledged and supported by recent scientific research. The herb tulsi provides protection against a number of health hazards, particularly those brought on by contemporary lifestyle choices. It is considered the best herb in India and is essential to many Ayurvedic treatments due to its both curative and preventative qualities³.

The most common species in the *Croton* genus, *Croton bonplandianus* (Euphorbiaceae), goes by a few names. Northern Argentina, Paraguay, and Southern Bolivia are the native habitats of *C. bonplandianus*. It has been frequently referred to as Ban Tulsi (jungle tulsi) because of the way its leaves along with flower cymes resemble those of Tulasi (*Ocimum sanctum*). The plant can be found growing in yards, wastelands, riverbanks, and along roadsides. As a tiny annual herb, *C. bonplandianus* can grow up to 24 inches wide as well as 28 inches tall. The lanceolate leaves, which are 3-5 cm long and alternately arranged, have serrated edges⁶. Because of inadequate light exposure, *C. bonplandianus*'s leaves are coriaceous,

smaller, and less pigmented; in contrast, they display more vivid coloration in bright light. The greenish fruits have verrucose surfaces and are oblong capsules, 5 mm in length. The tiny, peach-colored flowers have 12 racemes and tiny, globose flower buds that are placed in upright spikes. They also have five petals, five sepals, and a large number of long stamens that protrude. From September through November, *C. bonplandianus* is in blossom⁷. Traditional medicine has made considerable use of the plant *Croton bonplandianus* L. to treat a diversity of illnesses, encompassing jaundice, infectious diseases, abdominal dropsy, acute constipation, hypercholesterolemia, external wounds, hypertension, and dysentery. Several *in vitro* & *in vivo* research have confirmed, *C. bonplandianus* is a crucial source of traditional medicine for treating a variety of illnesses⁸.

The current investigation intends to elucidate ethnobotany as well as pharmacology of *O. sanctum* and *C. bonplandianus* to identify research gaps and delineate areas requiring further investigation.

2. Methodology

The pharmacological, phytochemical, and ethnomedicinal applications of *O. sanctum* and *C. bonplandianus* were reviewed. The pertinent information was gathered from online resources such as Google Scholar, Web Science, PubMed, Research4Life, Springer, and Science Direct using keywords like *O. sanctum*, *C. bonplandianus* and its synonyms, ethnomedicinal usage, phytochemicals, and pharmacological properties. The title, abstract, and entire study were reviewed to filter the information that was gathered. An agreement between the authors allowed the information to be included. This review does not include personal communications, unpublished results, or extraneous information. This review contains 55 references, with most of the research publications coming from India.

3. Historical perspective

Ocimum species, such as basilis, are commonly referred to be "king of the herbs." The common term "basil" probably originates from Greek words "basileus" and "basilikon," which both mean "king" and "royal." The Rig Veda, a classic Indian text, was the first to reference *O. sanctum*, which was initially used around 1500 BC. In accordance with Ayurvedic tradition, *Ocimum sanctum* has been tonic for many features of life and may assist with a lot of modern health problems. Likewise, *O. sanctum* also referred to as

"Thulasi" or else "Thulasi Ilai," has been greatly valued for its therapeutic properties in the Siddha school of medicine⁹. As an adaptogen, it supports the body's response to stress and has antibacterial, antioxidant, and immunomodulatory properties. The plant, known as "kaphrao" or "bai kraprow," has been utilized as an offering in Buddhist ceremonies and has spiritual, cultural, and historic importance in Thai culture. Additionally, it is offered at temples or incorporated into rituals performed at home. Then, in the Unani medical system, it is called "Tukhm Rehan," and it is known to have antibacterial qualities, ease respiratory discomforts, and support digestive health¹⁰. Additionally, traditional Chinese medicine uses it to treat digestive system issues like diarrhea and stomach aches as well as infections. *O. sanctum* has been utilized in conventional African medicine for treating whooping cough as well as various fevers. Its leaf decoction has been also utilized to treat coughs in West Africa¹¹. For perhaps 5,000 years, tulsi has been considered one of India's most fabled therapeutic herbs. Millions of people use and revere Tulsi's generous healing nature every day for everything from acute critical imbalances to general well-being. In Sanskrit, tulsi signifies "one that is incomparable"-one that does not accept or allow for similarity. The English pronunciation is "tool-see." The Charak Samhita, the earliest ancient Sanskrit Ayurvedic text, which was composed in 400 CE as well as maybe as early as 6000 BC, refers to the lengthy history of Tulsi's medicinal applications. The Rigveda, commonly known as the Book of Eternal Knowledge, which is thought to have been written around 5000 BC, also refers to Tulsi. The entire value of *O. sanctum* is demonstrated by its journey through various texts and medicinal techniques. Consequently, the fact that it has been used in many cultures and medical systems shows its worldwide appeal¹².

In the 18th century, Carl Linnaeus was the first to describe the genus *Croton*. Numerous *Croton* species, including *C. bonplandianus*, have been classified and better understood over time thanks to the efforts of botanists like George Don and others. With reference to its natural habitats in areas like Central and South America, the plant has been positioned within the larger framework of tropical flora. *Croton* species have long been used medicinally by indigenous peoples to cure a variety of conditions, such as digestive and skin disorders. Like other *Croton* species, *C. bonplandianus* might have had traditional

medical applications. Interest in the *Croton* genus increased over the 19th and 20th centuries as botanical exploration increased. The species' distinctive qualities were investigated by botanists and horticulturists, who helped to popularise its cultivation in attractive gardening. Because of its colourful leaves and capacity to flourish in tropical and subtropical climes, *C. bonplandianus* became a popular ornamental plant in the late 20th century. Gardeners valued its versatility and little maintenance. The taxonomic classification, traditional use, and horticultural role of *C. bonplandianus* are all part of its historical development. Its development reflects more general plant science concerns, such as ecology, conservation, and the value of traditional knowledge¹³.

4. Distribution of *O. sanctum* and *C. bonplandianus*

All six inhabited continents have tropical and warm temperate regions where *O. sanctum* is endemic, with Africa hosting the largest number of species. It is also widely distributed in West Africa, Malaysia, Australia, and a few Arab nations. It has recently been proposed that this species originated in North-Central India based on extensive phytogeographical research using chloroplast genome sequences. This therapeutic herb is grown all over India, from the Andaman and Nicobar Islands to the Himalayas, which are near about 1800 meters above sea level. Both as an escaped weed and as a cultivated plant, it is widely distributed. It has been cultivated for its essential oil along with for religious and therapeutic purposes¹⁴.

The native range of *C. bonplandianus* extends from Uruguay to South Bolivia. It grows mostly in the seasonally dry tropical biome and is classified as a shrub or subshrub. It is indigenous to Brazil South, Bolivia, Paraguay, Uruguay, Brazil West-Central, and Argentina Northeast and Northwest. India, Borneo, Bangladesh, Comoros, Gulf States, Cambodia, Laos, East Himalaya, Maryland, Kenya, Malaya, Myanmar, Nepal, Pakistan, Mauritius, Reunion, Nicobar Island, Sri Lanka, Taiwan, Thailand, Rodrigues, Sulawesi, and West Himalayas are among the countries where it has been introduced¹⁵. It typically grows as a weed along riverbanks, roadsides, and wastelands. It draws a lot of insects and pollinators and has a highly healthy population. It provides ecological functions and is a significant host plant for jewel bugs¹⁶.

Figure 1. Pictures showing A. *Croton bioplodianum* B. *Ocimum sanctum* growing in wild

5. Phytochemistry

Tulsi's chemical composition has been quite complicated as well as containing a variety of nutrients along with additional physiologically active compounds, levels of which can vary greatly among strains as well as even among plants in similar regions. Moreover, the amount of several of these components has been greatly impacted through various harvesting, processing, growing, as well as storage circumstances, many of which have been currently unknown. As utilized historically, the herb's pharmacological and nutritional properties are derived from the synergistic interactions among numerous active phytochemicals. Consequently, individual components or else extracts cannot completely replicate Tulsi's effects. Tulsi's intrinsic botanical and biochemical complexity has prevented modern science from standardizing it up to this point³.

The genus *Croton* has a wide variety of biomolecules. The genus' secondary metabolites are primarily composed of diterpenoids, which may include the skeletal categories such as cembranoid, clerodane, neo clerodane, Hali mane, kaurane, secokaurane, labdane, phorbol, and trachylobane. It has been found that several *Croton* species contain pentacyclic or steroid terpenoids. Volatile oils comprising mono- and sesquiterpenes, as well as compounds derived from shikimate, are prevalent in the species. The genus' importance from a medical perspective is greatly increased by reports that some species are suppliers of many alkaloids. Numerous studies have focused on phenolic chemicals, primarily flavonoids, lignoids, and proanthocyanidins. Because they contain proanthocyanidins and/or alkaloids, certain *Croton* species exhibit crimson sap¹⁷.

Table 1: Selected compounds identified from various parts of *O. sanctum* (OS)³ and *C. bioplodianum* (CB)¹⁷ and their classes.

Class	Compound names in OS	Distribution in OS Plant	Functions	Compound names in CB	Distribution in CB plant	Functions
Terpenoids	Urosolic acid	Leaves	Antioxidant	Clerodanes	Leaves	Anti-inflammatory
	Carvacrol	Leaves	Neuroprotective	Cembranoids	Leaves	Anticancer
	Linalool	Leaves	Antimicrobial	Urosolic acid	Root	Antioxidant
	Limatrol	Leaves	Anti-inflammatory	Kauranes	Leaves	Antiparasitic
	Methyl carvicol	Leaves	Antimicrobial	Taraxerol	Stem and Leaves	Cardioprotective
	Bornyl acetate	Stem	Hypotensive effect	Phorbol esters	Leaves	Antiallergic
	β-elemene	Stem	Anticancer effect	Trachylobanes	Leaves	Antitumor
	Neral	Leaves	Antineoplastic	Sarcopetalanes	Stem	Muscle contraction
Phenols				Sonderianin	Leaves	Anxiolytic
				Oleonolic acid	Root	Antiasthma tic
				Vomifoliol	Stem and Leaves	Immunosuppressive
	Rosmarinic acid	Stem	Antioxidant			
Flavanoids	Cirsimarinin	Stem	Antiproliferative			
	Orientin	Leaves	Heart protection	Catechin	Leaves	Antioxidant
	Vicenin	Leaves	Antitumor	Gallocatechin	Leaves	Antiviral

	Luteolin	Leaves	Renoprotection	Rutin	Leaves	Anticancer
	Apigenin	Leaves	Antiamyloidogenic			
	Apigenin-7-o-glucuronide	Leaves	Anticomplement			
	Luteolin-7-o-glucuronide	Leaves	Antidepressant			
	Molludistin	Leaves	Antibacterial			
	Isothymonin	Stem	Antifungal			
	Isothymusin	Stem	Antioxidant			
	Cirsilineol	Stem	Antithrombotic			
Alkaloids				Crotoparinine	Leaves	Antioxidant
				Crotoparine	Leaves	Antimicrobial
				Crotopflorine	Leaves	Antimalarial
				Sparsiflorine	Leaves	Antibacterial
				Proporphine	Leaves	Antioxidant
				Isoquinoline ionone	Leaves	Antifungal
				Glaziovine	Stem and Leaves	Antilulcer
Essential oil	Eugenol		Analgesic			
	Euginal					
	Caryophyllene		Food preservative			
	1,8-cineole	Leaves	Gastroprotective			
	1,8-bisabolene		Antimicrobial			
	Methyl eugenol		Antibacterial			
	β -caryophyllene oxide					
			Anaesthetic			
			Analgesic			
Sterol	Stigmasterol	Stem	Antidiabetic	Stigmasterol	Stem	Antitumor
	β -sitosterol	Leaves	Antiinflammatory	Campesterol	Stem	Antiinflammation
				Sitosterol	Whole Plant	Lower cholesterol
				Sitosterol-D-glucoside	Leaves	Antifungal
				16-Hexadecanoyl hydrazide	Leaves	Antidepressant
				Phytol bis (7-methyl octyl) ester	Leaves	Antimicrobial
					Stem	Food packaging
				2-benzenedicarboxylic acid	Stem	Used to make Saccharin
				12-orthotrideconeol-phorbol-13-acetate	Seeds	Antineoplastic
Other compounds						

6. Ethnobotanical uses of *O. sanctum* and *C. bonplandianum*

O. sanctum contains a variety of bioactive substances and may have therapeutic uses. Ethnobotanical research that documents Indigenous knowledge is crucial for both the sustainable utilization of biological resources along their conservation. Tulasi is worshipped as a goddess in Hinduism, and all parts of the plant leaves, stem, flower, root, seeds, and oil—are regarded as sacred. It is even believed that the nearby soil, which has just been demonstrated to contain helpful endophytic fungi, is a part of the divine. Because of this, a Hindi home would not be complete without a tulsi plant, usually kept in a

decorative earthen pot in the courtyard. Tulsi is utilized for both utilitarian as well as ceremonial purposes³. For instance, the unique clove-like scent of tulsi, which comes from its high eugenol content, helps to repel flies, mosquitoes, and other dangerous insects while also connecting the householder to the holy. Rituals in the morning and evening, along with additional spiritual as well as cleansing activities that may include drinking tulsi tea or swallowing leaves, enhance the utilization of Tulsi in everyday life. In Hinduism as well as certain Greek Orthodox churches, tulsi is employed ceremonially to produce

"holy water," which also sanctifies dwelling. Tulsi's historic Ayurvedic usage, according to plant cultures, may be due to the inherent qualities of the plant's essential oils, which include eugenol and other acids with anti-inflammatory and antioxidant qualities⁴. It had been discovered that the plant originated in South America and Asia. *C. bonplandianus* has been employed for the treatment of skin conditions for example ringworm infection, respiratory problems, and bodily inflammation due to its antibacterial properties²³. Bark as well as roots of *C. bonplandianus*'s chemical composition is cholagogue and purgative. Stems and leaves of Ban Tulsi are used to cure genital sores, diarrhea, and to stop bleeding from cuts and other bodily ailments. The seeds of this plant are used to cure internal abscesses, liver problems, severe constipation, and abdominal dropsy²⁴.

Its juice is used to treat headaches. In Malden's rural areas, *C. bonplandianus* has been commonly grown as well as utilized as fuel and detergent. Fuel can be made from its stems and branches. After that, ash is gathered and stored for 5 or 6 days in a container. The remaining residue has been utilized as a detergent to clean cotton clothes after dissolving in warm water. Ethnic tribes in rural West Bengal, India, use *C. bonplandianus*'s roots along with leaves to alleviate extreme heat and snake venom. According to the literature, the leaf extract is utilized to cure a diversity of conditions, encompassing venereal disease, cancer, ulcers, and more²⁵. Numerous human problems can be cured by the entire plant and its various parts; these are listed in tabular form below:

Table 2: Common Ethnobotanical uses *O. sanctum* and *C. bonplandianus*

S. No.	Plant part	Medicinal uses	References
1.	Leaves	To cure: Flu, Headaches, Emetic syndrome, Colic pain, Common colds, Migraine headache, Inflammation, Wound, Earache, Fatigue, Diabetes, Bronchial asthma, Snakebite, Arthritis, Skin diseases, Ulcers, Convulsions, Gastric diseases, Chronic fever, Eye infection, Malaria fever, Immunological disorders, Sore throat, Insomnia, Digestive disorders, Night blindness, Infections of mouth, Diarrhoea, Dysentery, Cold, cough, Insect bite, heart disease As an antianxiety, anticancer, antidepressant, antifertility, antifatigue, antiasthmatic, antithyroid, antihelminthic To stop vomiting and the negative impact of radiation.	[3, 18, 19]
2.	Fruits	For flavoring foods for example poultry and fish, honey, tea and liquor, vegetables, jelly Utilized in various dishes, including salads	[20]
3.	Seeds	As an antiulcer, antihypertensive, larvicidal, anticancer, antiarthritic, and analgesic	[4]
4.	Whole plant	For the treatment of stress, scorpion-sting, inflammation, snake bite, and diabetes Function as antiseptic, antiallergic, cardioprotective, and memory enhancer	[21, 22]

7. Pharmacological activity of *O. sanctum* and *C. bonplandianus*

Flavonoids, polyphenols, & essential oils are among numerous bioactive substances found in these plant parts that contribute to their pharmacological effects.

7.1. Antioxidant activity

Many researchers have reported *O. sanctum* L. antioxidant properties. Flavonoids' antioxidant qualities and their connection to membrane defense have been highlighted. Together with phenolic components that include isothymusin, cirsimarinin, cirsilineol, apigenin, along with rosmarinic acid that shows great antioxidant activity, *O. sanctum* L. extract of fresh leaves along with stems comprised notable levels of eugenol, a crucial part of volatile oil.

Flavonoids orientin as well as vicenin showed antioxidant action in vivo by significantly lowering radiation-encouraged lipid peroxidation in mice's liver²⁶. In male albino rabbits, *O. sanctum* L. aqueous extract reduces erythrocyte lipid peroxidation activity caused by hypercholesterolemia in a dose-dependent way. Additionally, oral feeding significantly protects the aorta and leaver tissue from peroxidative damage brought on by hypercholesterolemia. Another investigation found that *O. sanctum* L. aqueous extract substantially boosts the activity of antioxidant enzymes that include superoxide dismutase as well as catalase levels in an extract-treated group in comparison with the control group²⁷.

Conversely, *C. bonplandianus* ethanolic extracts demonstrated DPPH and hydroxyl radical scavenging capabilities. *C. bonplandianus* leaf hydroethanolic extract has shown strong free radical scavenging ability. Its *C. bonplandianus* leaf chloroform fraction demonstrated a nitric oxide scavenging assay, lowering power capacity and free radical scavenging property^{48, 49}. Furthermore, the n-hexane and ethyl acetate fractions of *C. bonplandianus* leaves had less antioxidant activity than the chloroform fraction. Excellent free radical scavenging activity has been exhibited by ethanolic leaf extract of *C. bonplandianus* ($IC_{50}=170.3\mu\text{g}/\text{mL}$); nevertheless, total antioxidant content had been determined to be $214\pm0.20\mu\text{g}/\text{mL}$. Dried *C. bonplandianus* leaves ethanolic extract demonstrated a scavenging effect against free radicals and nitric oxide⁵⁰.

7.2. Antidiabetic activity

Diabetes mellitus is the most prevalent endocrine condition as well as has been referred to as the silent killer. Due to deficiencies in either insulin action or secretion, it is associated with a spectrum of metabolic disorders that are typified by persistent hyperglycemia and anomalies in the metabolism of carbohydrates, lipids, proteins, as well as acids. It is a medical condition in which glucose, or blood sugar, increases⁴⁶. *O. sanctum* L.'s ethanolic extract substantially lowers glycosylated hemoglobin, blood glucose, as well as urea in streptozotocin-induced diabetic rats while concurrently raising glycogen, hemoglobin, and protein²⁸. Insulin and peptide levels along with glucose tolerance increased because of these extracts. In another research, Vats²⁹ investigated impact of *O. sanctum* L. on 3 key enzymes that participate in the metabolism of carbohydrates: PFK (phosphofructokinase), hk (hexokinase), gk (glucokinase), as well as glycogen amount in insulin-independent (skeletal muscle along with liver), insulin-independent (kidneys along with brain) tissues in rats given a 30-day dose of streptozotocin (STZ, 65mg/kg) to induce diabetes. When 200 mg/kg of *O. sanctum* L. extracts are administered for 30 days, approximately 9.06 & 24.4 percent declines in plasma glucose levels occur on days 15 as well as 30, correspondingly. *O. sanctum* substantially declines renal weight but not liver weight when measured as a body weight percentage. PFK, gk, as well as hk activity distributed in control of diabetic, had been largely restored by *O. sanctum* L. It had been discovered that giving an *O. sanctum* L. leaves alcoholic extract orally notably reduced blood sugar

levels³. The antidiabetic properties of *C. bonplandianus* are not typically documented in its plant extracts.

7.3. Nootropic activity

Nootropic drugs improve memory, focus, and processing speed, among other aspects of cognitive function. Numerous substances found in *O. sanctum*, including carvacrol, rosmarinic acid, and eugenol, have been demonstrated to possess nootropic properties. *O. sanctum* has the potential to enhance cognitive abilities. By lessening chronic stress's detrimental impact on the brain, its adaptogenic properties, which promote the adaptation of stress as well as the reduction of anxiety, may subsequently assist in improved cognitive function³⁰. In mice, Joshi and Parle²¹ evaluated the extract from *O. sanctum*'s potential as a nootropic as well as anti-amnesic. The mice were given an aqueous extract of the entire plant of *O. sanctum* L., which prevented the amnesic effects of scopolamine (0.04mg/kg), and diazepam (1mg/kg), along with age-induced memory degradation. Exteroceptive behavioural models were the passive avoidance paradigm and the elevated plus maze. In mice, *O. sanctum* L. extract substantially lowered transfer latency as well as enhanced step-down latency in comparison to the scopolamine, control (piracetam-treated), and elderly groups. Therefore, *O. sanctum* L. preparation might be valuable in the treatment of cognitive diseases like Alzheimer's and dementia. A 400mg/kg intraperitoneal (ip) *O. sanctum* root extract's methanolic extract lengthens the mouse's swimming time in a despair swim test paradigm, indicating *O. sanctum* L. possess anti-stress and/or central nervous system stimulant properties³¹. The plant extracts of *C. bonplandianus* have not been commonly reported to possess nootropic activities in current literature.

7.4. Gastroprotective activity

Standardized methanolic extract of *O. sanctum* leaves (OSE) exhibited a dose-dependent ulcer preventative effectiveness against stomach ulcers produced by cold-restraint stress when taken orally 2 times daily for 5 days at dosages ranging from 50-200 mg/kg. According to Goel³², the optimal effective dose of OSE (100 mg/kg) demonstrated considerable ulcer protection against gastric ulcers caused by ethanol as well as pyloric ligation, but it had been inefficient against ulcers caused by aspirin. Additionally, OSE (100 mg/kg) enhances the longevity of mucosal cells, cellular mucus, and mucin secretion, while suppressing the production of lipid peroxidation and the unpleasant acid pepsin. Rats with pyloric ligation

and aspirin treatment were used to test *O. sanctum*'s antiulcerogenic properties. Seven days prior to therapy, the extract boosted mucus secretion and decreased ulcer index, free, and total acidity when administered acutely and chronically. Because *O. sanctum* extract can increase mucus secretion and decrease acid secretion, it can be said to have antiulcerogenic properties against experimental ulcers³³. Gastroprotective properties are not frequently present in the different parts of the *C. bonplandianus*.

7.5. Antimicrobial activity

The greater quantity of linoleic acid in *O. sanctum* fixed oil may have contributed to its antibacterial qualities, mentioning Singh et al.'s investigation. The oil exhibits strong antibacterial activity against *Pseudomonas aeruginosa*, *Bacillus pumius*, *Staphylococcus aureus*, with *S. aureus* being the most susceptible. Likewise, it was discovered that *O. sanctum* was effective against strains of *Neisseria gonorrhoea* that were resistant. In contrast to the alcoholic extract, Geeta et al. discovered that the aqueous extract of *O. sanctum* (60 mg/kg) displays extensive zones of inhibition against *Proteus* spp., *Escherichia coli*, *Candida albicans*, *Klebsiella* spp., as well as *Staphylococcus aureus* when evaluated utilizing agar diffusion approach. Alcoholic extract exhibited a greater *Vibrio cholerae* zone³⁴.

To investigate the antibacterial properties of *C. bonplandianus* leaves, fruits, latex extracts, and fresh latex, 500mg of every extract was combined with 5ml of sterile 10 percent DMSO (dimethyl sulfoxide) to make 10% w/v test solutions of the plant's leaves, fruits, and latex. To assess fresh latex, extracts from the same source were used to determine that 25, 50, 75, and 100 had 2.5, 7.5, and 10 mg of antibacterial activity, respectively. At various concentrations (2.5, 5, 7.5, & 10mg), *C. bonplandianus* whole plant and latex extracts were added to each well of Mueller Hinton Agar (MHA) plates that had already been infected with the relevant bacterial cultures. At 37 °C plates had been incubated for a whole day. Streptomycin (10 µg) served as the positive control group in this investigation, while 10% DMSO served as the solvent. A zone reader was used to measure the diameter of the inhibition zone (in millimeters) surrounding the well following incubation⁴². The best results were achieved at 7.5mg/75 µl when the antibacterial activity of several solvent-extracted extracts of *C. bonplandianus* leaf were examined against bacterial isolates. When contrasted with other bacterial isolates, aqueous leaf extract demonstrated a minimum zone of inhibition of 10±1mm against *P. aeruginosa* as well as the maximum zone of inhibition of 15±2 mm against *S. aureus*⁴³. Several bacterial isolates were treated with ethanolic leaf extract; the

results showed that *E. acrogenes* and *E. coli* had the highest zone of inhibition, that is 22±2 mm, while *E. faecalis* had the lowest zone of inhibition, that is 16±2 mm. The leaf acetone extract's smallest zone of inhibition was 10±1 mm, while its largest zone of inhibition against *E. acrogenes* and *E. coli* was 19±2mm. The leaf extract in chloroform showed inhibition of 19±2 mm against *E. coli* and *S. aureus*, but the leaf extract in benzene showed inhibition of 20±2 mm against *S. aureus*⁴⁴. As per the National Committee for Clinical Laboratory Standards (1997), agar disc diffusion technique was utilized to examine the invitro antibacterial activity of aqueous extracts (say) of *C. bonplandianus* against 3 strains of Gram-positive along with 4 strains of Gram-negative bacteria. Potent antibacterial action against a variety of harmful bacteria has been demonstrated by several antibiotics made from plant extract. *C. bonplandianus* possesses antimicrobial and genotoxic properties. In the anaphase and telophase stages, the root tip cells *Allium* exhibited a 24.17% aberration due to the leaf aqueous extract. However, 22.08% and 21.55% aberration were produced by methanolic and acetone extracts, respectively. *C. bonplandianus* leaf & fruit's methanolic extract have been more efficient against microbes for example *Pseudomonous aeruginosa*, *Bacillus subtilis*, *E. coli*, *Klebsiella pneumonia*, along with *S. aureus*. Most efficient against *B. subtilis*, *P. aeruginosa*, *E. coli*, *Proteus vulgaris*, *B. megaterium*, as well as *S. aureus* had been *C. bonplandianus* leaf extracts prepared in chloroform and benzene^{25, 45}.

7.6. Anti-inflammatory activity

O. sanctum's methanolic extract (500 mg/kg) as well as aqueous suspension demonstrated analgesic, antipyretic, & anti-inflammatory activities in rats with acute (carrageenan-induced pedal edema) along with chronic inflammations. The fixed oil and linolenic acid have potent anti-inflammatory activities against PGE2, leukotriene, and arachidonic acid-induced paw edema in rats because they may block cyclooxygenase as well as lipoxygenase pathways of arachidonic acid metabolism³⁵.

An estimation of the *C. bonplandianum* leaf ethanolic extract was conducted on human blood vessel membranes. About 83.2% was prevented from hypotonicity-induced human blood vessel membrane lysis by ethanolic extract (200 mg/mL). An assessment was conducted on the anti-inflammatory features of *C. bonplandianum* hydro-alcoholic leaf extract. Rat model of paw edema produced by carrageenan After four hours of treatment, a hydro-alcoholic *C. bonplandianum* leaf extract notably reduced rat paw edema caused by carrageenan⁵³.

7.7. Anticancer activity

Numerous researchers have demonstrated and cited anticancer properties of *O. sanctum* Alcoholic extract (AIE) from *O. sanctum* leaves modulates carcinogen-metabolizing enzymes that include cytochrome b5, cytochrome P 450, aryl hydrocarbon hydroxylase, GST (glutathione S-transferase), that have been essential for the detoxification of carcinogens as well as mutagens. Benzo(a)pyrine-induced neoplasia of mouse forestomach along with 3'-methyl-4-dimethylaminoazobenzene-induced hepatomas in the rats were substantially reduced by OS³⁶. It has been demonstrated that the AIE in OS leaves inhibits chemically produced cutaneous papilloma in mice. Fresh Tulsi leaf paste taken orally might be capable of stopping the initial stages of buccal pouch carcinogenesis caused by DMBA. OS leaf extract inhibits the carcinogen's metabolic activity, hence blocking or suppressing the events linked to chemical carcinogenesis. The anticancer properties of *O. sanctum* have been identified in Swiss albino mice with EAC (Ehrlich ascites carcinoma) & S 180 tumors. The incidence and volume of tumors caused by 20-methylcholathrene were considerably decreased by supplementing with the oil at the maximally tolerable dose of 100 μ l/kg body weight. Mice given seed oil treatment showed an improved rate of survival and a delay in the occurrence of tumors. The chemo-preventive effectiveness of 80mg/kg vitamin E had been equivalent to that of 100 μ l/kg seed oil. Seed oil's antioxidant properties have been partially linked to its possible chemo-preventive effects³⁷.

The Euphorbiaceae family includes the green shrub *C. bonplandianus*, which is native to Southeast Asia. Croton oil's main active ingredient, 12-O-tetradecanoylphorbol-13-acetate, has been used as a cancer promoter region because it causes irritation and inflammation when applied topically to mice's skin that has previously been exposed to 7,12-dimethylbenz(a)anthracene or other aromatic polycyclic substances (typical dose: 5–16 nmol, twice a week). TPA has been shown to limit growth, induce apoptosis, or stimulate development in human malignant cells isolated from individuals with melanoma, lung, breast, or prostate tumours. This data comes from a thorough tumor investigation. Prostate cancer cells known as LNCaP treated with the right amounts of TPA (1-1.6NM) have shown inhibition of growth. Nevertheless, the same cells that were given TPA at dosages that were significantly higher showed signs of apoptosis. TPA and ATRA together have been shown to restrict the

growth of cultured prostate cancer LNCaP cells, whilst TPA or ATRA therapy was found to inhibit the growth of existing LNCaP tumors in immunodeficient animals. All of the treated animals experienced some tumor regression when TPA along with ATRA was given to these mice with tumors, though some of the treated mice experienced tumor regressions¹³.

7.8. Anti-fertility

O. sanctum leaf benzene extract has a reversible antifertility action because it reduces sperm motility, forward velocity, and total sperm count when taken at a dose of 250 mg/kg body weight for 48 days. While the percentage of abnormal sperm in the caudal epididymal fluid rose, the fructose content of seminal vesicles as well as the caudal plasma of epididymis declined. All these readings reverted to normal 2 weeks after the medicine had been withdrawn³⁸. Currently, there is no documented evidence or research indicating that *C. bonplandianus* exhibits any properties that inhibit fertility.

7.9. Immunomodulatory effect

The rich phytochemical composition of *O. sanctum*, which includes polyphenols, essential oils and flavonoids has been demonstrated to possess immune-enhancing qualities and is linked to its capacity to regulate the immunological response. Albino rats' humoral immune response had been altered through a steam-distilled extract from fresh OS leaves. This might be explained by a number of processes, including the creation of antibodies, the release of hypersensitive reaction mediators and the target organs' tissues' reactions to these mediators²⁶. The immunomodulatory effects of *O. sanctum* seed oil, which appear to impact humoral and cell-mediated immune response, might be mediated by GABAergic pathways. The leaves of *O. sanctum* stimulate the humoral immunogenic response, as demonstrated by the cellular immunologic response, demonstrated by lymphocytosis and the formation of E-rosette, and by a rise in antibody titer in sheep erythrocyte agglutination and Widal tests³⁴. In the course of the comparison between the two plant species, it was observed that the immunomodulatory effects exhibited by *C. bonplandianus* were significantly less pronounced than those of its counterpart. This finding suggests that *C. bonplandianus* may not be as effective in modulating immune responses, highlighting the need for further investigation into its potential therapeutic applications and mechanisms of action.

7.10. Central Nervous System (CNS) depressant activity

Pentobarbital (40 mg/kg, ip)-induced mice's loss of reflex was prolonged by *O. sanctum*'s AIE, which also reduced the duration and intensity of electroshock and convulsions caused by pentylenetetrazole. In "open field" trials, it also reduced ambulation and fighting time caused by apomorphine. OS extract enhanced swimming time at high doses, indicating CNS stimulant or else antistress effect. The impact had been equivalent to that of desipramine, an antidepressant drug. It has been demonstrated that rats administered OS fixed oil (2–3ml/kg, ip) sleep longer when given pentobarbitone. The increase in pentobarbitone-induced sleep duration may be caused by fixed oil's suppression of pentobarbitone's hepatic metabolism and renal clearance³⁹. The findings suggest that *C. bonplandianus* may have a constrained ability to influence reflex actions. This highlights the necessity for more in-depth research to gain a clearer understanding of its possible therapeutic benefits and the underlying mechanisms that drive its effects. Such investigations could be essential in revealing the full scope of its potential applications in medical science.

7.11. Antiarthritic activity

Rats with formaldehyde-induced arthritis were used to test *O. sanctum* fixed oil's antiarthritic properties. The fixed oil substantially declined the diameter of an irritated paw. Rats' arthritic conditions significantly enhanced after receiving the fixed oil intraperitoneally every day for ten days. Aspirin at a dose of 100mg/kg had antiarthritic impact that had been alike to that of 3ml/kg, ip⁴¹. Inflammatory as well as carrageenan mediators, for example, histamine, serotonin, PGE2, & bradykinin, were suppressed by the fixed oil. Naturally, any inflammatory reaction involving these mediators may be inhibited by the oil. The outcome indicates that the inflammation models, which include adjuvant and turpentine oil-induced joint edema in rats, may have beneficial antiarthritic properties⁴⁰. At present, there is a notable absence of documented evidence or scientific research that supports the claim that *C. bonplandianus* possesses any properties capable of influencing or controlling anti-arthritic activity.

7.12. Adaptogenic activity/antistress activity

The adaptogenic action of plants might be due to *O. sanctum*'s immunostimulant potential. The OS whole plant's AIE enhanced swimming mice's physical endurance (survival time) inhibited stress-induced ulcers in rats, as well as stopped mice's milk-induced leucocytosis. These findings suggest that *O. sanctum*

increases animals' non-specific resistance to a range of stress-induced biological changes⁴¹. Currently, there is a significant lack of documented evidence or scientific studies that substantiate the assertion that *C. bonplandianus* has such properties that can affect or regulate adaptogenic activity. This absence of research leaves a gap in our understanding of the potential benefits of this plant and highlights the need for further investigation into its characteristics and effects.

7.13. Wound healing activity

In everyday life, wounds are typical clinical entities that may vary in size from small to large. Five steps can be distinguished in the wound healing process: collagenation (cellular phase), contraction (wound contraction), collagen deposition (collogenation), epithelialization (epithelialization), as well as scar remodeling (cicatrixization). Wound contraction is the process by which the wound area shrinks, while wound healing is the process by which damaged tissue is returned as nearly to its normal state as feasible. In accordance with Ramachandran⁴⁶, the alcoholic leaf extract of *C. bonplandianus* substantially raises the pace of wound concentration. They concluded that herbal extract ointments containing leaf extracts from *C. bonplandianus* substantially boost the rate of wound concentration⁵⁵. At present, there is a considerable deficiency of documented evidence and scientific research that verifies the notion that *O. sanctum*, commonly referred to as holy basil, has any significant properties that can influence or improve the process of wound healing. This lack of rigorous studies and data not only leaves a conspicuous void in our comprehension of the potential therapeutic benefits offered by this remarkable plant but also emphasizes the urgent need for comprehensive research to explore its characteristics, mechanisms, and effects related to wound regeneration and healing processes.

8. Conclusion

The ancient practice of phytomedicine represents the earliest known form of medicine, relying on the healing properties of plants. Among these plant-based remedies, *O. sanctum*, commonly known as Tulsi, and *C. bonplandianus* stand out for their extensive use in ethnomedical practices across the globe, where they are employed to treat an array of ailments. Rooted in the rich biodiversity of India, Ayurvedic medicine uniquely draws upon a diverse spectrum of medicinal and culinary plants that few other medical systems can claim. Tulsi, in particular, is lauded not only for its specific therapeutic applications but also for its remarkable adaptogenic qualities. These properties confer significant

preventive and curative benefits, particularly against the stress-related degenerative diseases prevalent in modern industrialized societies. Ongoing clinical research is anticipated to further uncover and validate Tulsi's numerous health-promoting attributes. Recent studies have revealed a wealth of diverse phytochemicals in various parts of *C. bonplandianus*, including its fruit, leaves, and latex. Altogether, a total of twenty-one key phytochemicals have been identified, underscoring the plant's medicinal potential. The extensive literature surrounding traditional and ethnomedical practices highlights both the remarkable efficacy and safety of these plants in addressing a wide range of health issues. However, a deeper exploration is essential to better differentiate, describe, and clarify the intricate chemical profiles of the bioactive compounds that endow *O. sanctum* and *C. bonplandianus* with their therapeutic effects. By employing advanced reverse pharmacological techniques, researchers can extract potent and safe medicinal compounds from these plants, paving the way for the development of innovative natural drugs.

Acknowledgements

The authors express gratitude to Professor Ina Aditya Shastri, Vice Chancellor of Banasthali Vidyapith, Rajasthan, for providing invaluable support and encouragement. Additionally, they would like to acknowledge the networking support provided by DST's FIST program at the Department of Bioscience and Biotechnology and the Bioinformatics Centre, which DBT funded.

Author contributions

SS – Research concept and design, PB – Collection and assembly of data, Data analysis and interpretation, Writing the article, SS, PB – Critical revision and final approval of the article.

Data Availability

Not Applicable.

Conflicts of interest

The authors declare that there are no conflicts of interest related to this article. No ethical issues.

References

1. Gharti SD, Nag P, Magar GT, Singh AK. Ethnomedicinal Plants Used in Tharu Community, A Case Study of Rapti Sonari, Western Nepal: Ethnomedicinal Plants Used in Tharu Community. *PhytoTalks*. 2024; 1(2):143-156. <https://doi.org/10.21276/pt.2024.1.2.8>
2. Prajapati KK, Pandey G, Pandey R. A Review on some Medicinal Plants of North Eastern Terai Region of Uttar Pradesh. *PhytoTalks*. 2024; 1(1):46-62. <https://doi.org/10.21276/pt.2024.v1.i1.8>
3. Pattanayak P, Behera P, Das D and Panda SK. *Ocimum sanctum* Linn. A reservoir plant for therapeutic applications: An overview. *Phcog Rev*. 2010; 4:95-105. <https://doi.org/10.4103/0973-7847.65323>
4. Prakash J, Gupta SK. Chemopreventive activity of *Ocimum sanctum* seed oil. *J Ethnopharmacol*. 2000; 72:29-34. [https://doi.org/10.1016/S0378-8741\(00\)00194-X](https://doi.org/10.1016/S0378-8741(00)00194-X)
5. Anbarasu K, Vijayalakshmi G. Improved shelf life of protein-rich tofu using *Ocimum sanctum* (tulsi) extracts to benefit Indian rural population. *J Food Sci*. 2007;72:M300-05. <https://doi.org/10.1111/j.1750-3841.2007.00487.x>
6. Qureshi S, Diab AA, Al-Anazi FA, Al-Hassan MI, Qureshi MF, Qureshi VF, et al. Negative aspects of the beneficial herbs: An overview. *J Herb Med Toxicol*. 2012;6:1-14. <https://doi.org/10.3923/rjmisci.2012.203.207>
7. Saper BR, Kales NS, Paquin J, Burns JM, Eisenberg MD, Davis BR, et al. Heavy metal content of Ayurvedic herbal medicine products. *J Am Med Assoc*. 2004; 292(23): 2868-2873. <https://doi.org/10.1001/jama.292.23.2868>
8. Tailor V, Prameela HC, Singh G, Dehar PS, Rani J, Jena N, Kumar S, Singh B. Qualitative phytochemical analysis of leaves of *Croton bonplandianus* Baill. Plants & Secondary Metabolites. APRF publishers, Odisha. 2024; Volume 1: (Ed.1). <http://dx.doi.org/10.5281/zenodo.12508102>
9. Upadhyay RK. Tulsi: A holy plant with high medicinal and therapeutic value. *Int J Green Pharm*. 2017;11(1): S1-S12.
10. Tiwari AK, Chaudhary IJ, Pandey AK. Indian traditional trees and their scientific relevance. *J Med Plants Stud*. 2019; 7(3):29-32.
11. Kulkarni KV, Adavirao BV. A review on: Indian traditional shrub Tulsi (*Ocimum sanctum*): the unique medicinal plant. *J Med Plants Stud*. 2018;6(2):106-10.
12. Kumari S, Singh PA, Hazra S, Sindhwani R, Singh S. *Ocimum sanctum*: The Journey from Sacred Herb to Functional Food. *Recent Adv Food Nutr Agric*. 2024; 15:83-102. <https://doi.org/10.2174/012772574X290140240130101117>
13. Dash SL, Mohapatra R, Mishra SK. Anticancer Activity Study of Some Selected Indian Medicinal Plants Used Internationally. *J Pharm Negat Results*. 2023; 14(1):125-132. <https://doi.org/10.47750/pnr.2023.14.01.26>
14. Kumar R, Saha P, Lokare P, Datta K, Selvakumar P, Chourasia A. A systemic review of *Ocimum sanctum* (Tulsi): Morphological characteristics, phytoconstituents and therapeutic applications. *Int J Res Appl Sci Biotechnol*. 2022; 9(2): 221-226. <https://doi.org/10.31033/ijrasb.9.2.15>
15. Singh B, Dutt N, Kumar D, Singh S and Mahajan R. Taxonomy, ethnobotany and antimicrobial activity of *Croton bonplandianus*, *Euphorbia hirta* and *Phyllanthus fraternus*. *Int J Adv Dev Res*. 2011; 2(1):21-29.
16. Rosa AC, Ferraro A, da Silva RH, Pott VJ, Victório, Arruda RDCDO. Leaf anatomy of two medicinal Croton species: contribution to plant recognition. *Microsc Res Tech*. 2021; 84(8): 1685-1695. <https://doi.org/10.1002/jemt.23727>

18. Ghosh T, Biswas MK, Roy P, Guin C. A Review on Traditional and Pharmacological Uses of *Croton bonplandianum* with Special Reference to Phytochemical Aspect. *European J Med Plants*. 2018; 22(4):1-10. <https://doi.org/10.9734/EJMP/2018/40697>

19. Abdussalam AK, Prasanth KP, Azeez K, Prajith PK. Phytochemical Analysis of Selected Indigenous Wild Edible Fruits Used by the Kattunaikka Tribe of Wayanad District, Kerala, India. *PhytoTalks*. 2024; 1(1):21-28. <https://doi.org/10.21276/pt.2024.v1.i1.5>

20. Prasad MPV, Khanum F. Antifatigue activity of ethanolic extract of *Ocimum sanctum* in rats. *Res J Med Plant*. 2012; 6(1):37-46. <https://doi.org/10.3923/rjmp.2012.37.46>

21. Pandey G, Prajapati KK, Pandey R. Distribution, Taxonomy and Medicinal Importance of *Solanum torvum* Sw.: Importance of *Solanum torvum* Sw. *PhytoTalks*. 2024; 1(2): 95-105. <https://doi.org/10.21276/pt.2024.1.2.2>

22. Joshi H, Parle M. Evaluation of nootropic potential of *Ocimum sanctum* Linn. In mice. *Indian J Exp Biol*. 2006; 44:133-136.

23. Gholap S, Kar A. Hypoglycaemic effects of some plant extracts are possibly mediated through inhibition in corticosteroid concentration. *Pharmazie*. 2004; 59:876-878.

24. Maurya SK. Standardization and antioxidant activity of an Ayurvedic formulation "Kushavleha". *Int J Green Pharm*. 2016; 9(4):16-26.

25. Ghosh P, Mandal A, Rasul MG. A new bioactive ursane-type triterpenoid from *Croton bonplandianum* Bail. *Chem Sci J*. 2013;125(2):359-64.17. <https://doi.org/10.1007/s12039-013-0387-9>

26. Darade VS, Shinde AR, Bijali NR, Sable VU. *Croton bonplandianum* in traditional India. *EPRA Int J Res Dev*. 2024; 9(8):151-159.

27. Ahlawat B, Sharma OP. Pharmacological activities of *Ocimum sanctum* (tulsi): a review. *World J Pharm Med Res*. 2019; 5(1):104-109.

28. Devi PU, Gonasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the *Ocimum sanctum* flavonoids orientin and vicenin: Mechanism of action. *Radiat Res*. 2000; 154(4):455-460. [https://doi.org/10.1667/0033-7587\(2000\)154\[0455:RPBTOF\]2.0.CO;2](https://doi.org/10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2)

29. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. *Ocimum sanctum* leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. *J Endocrinol*. 2006; 189:127-36. <https://doi.org/10.1677/joe.1.06615>

30. Vats V, Yadav SP, Grover JK. Ethanolic extract of *Ocimum sanctum* leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. *J Ethnopharmacol*. 2004; 90: 155-60. <https://doi.org/10.1016/j.jep.2003.09.034>

31. Patel VS, Patel RC, Rathod DK, Patel SM, Rout SK. Development and validation of RP-HPLC method for determination of ursolic acid in *Ocimum sanctum* linn in human plasma. *J Res Educ Indian Med*. 2012; 18(3-4):141. <http://dx.doi.org/10.53879/id.52.05.10305>

32. Kombade S, Khadabadi SS, Deore S. Formulation and in-vitro evaluation of sun protection factor of flavonoids extracted from *Tagetes erecta* (L.) flowers, *Cucumis sativus* fruits and essential oil of *Ocimum sanctum* leaves sunscreen cream. *Int J Pharm Sci Rev Res*. 2014; 26(2):136-40.

33. Goel RK, Sairam K, Dorababu M, Prabha T, Rao ChV. Effect of standardized extract of *Ocimum sanctum* Linn. on gastric mucosal offensive and defensive factors. *Indian J Exp Biol*. 2005; 43:715-21.

34. Dharmani P, Kuchibhotla VK, Maurya R, Srivastava S, Sharma S, Patil G. Evaluation of anti-ulcerogenic and ulcer-healing properties of *Ocimum sanctum* Linn. *J Ethnopharmacol*. 2004; 93:197-206. <https://doi.org/10.1016/j.jep.2004.02.029>

35. Singh S, Malhotra M, Majumdar DK. Antibacterial activity of *Ocimum sanctum* L. fixed oil. *Indian J Exp Biol*. 2005; 43:835-7.

36. Singh S. Comparative evaluation of anti-inflammatory potential of fixed oil of different species of *Ocimum* and its possible mechanism of action. *Indian J Exp Biol*. 1998; 36:1028-31.

37. Madhuri S. Studies on oestrogen induced uterine and ovarian carcinogenesis and effect of ProImmune in rats. PhD thesis, Rani Durgavati Vishwa Vidyalaya, Jabalpur, MP, India, 2008.

38. Somkuwar AP. Studies on anticancer effects of *Ocimum sanctum* and *Withania somnifera* on experimentally induced cancer in mice. PhD thesis, JNKVV, Jabalpur, MP, India, 2003.

39. Seth SD, Johri N, Sundaram KR. Antispermatic effect of *Ocimum sanctum*. *Indian J Exp Biol*. 1981;19:975.

40. Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from *Ocimum sanctum* Linn. *Phytomedicine*. 2000;7(1):7-13. [https://doi.org/10.1016/S0944-7113\(00\)80015-X](https://doi.org/10.1016/S0944-7113(00)80015-X)

41. Singh S, Majumdar DK. Effect of fixed oil of *Ocimum sanctum* against experimentally induced arthritis joint edema in laboratory animals. *Int J Pharmacog*. 1996; 34: 218. <https://doi.org/10.1076/phbi.34.3.218.13205>

42. Godhwani S, Godhwani JL, Vyas DS. *Ocimum sanctum*: A preliminary study evaluating its immunoregulatory profile in albino rats. *J Ethnopharmacol*, 1988; 24: 193-198. [https://doi.org/10.1016/0378-8741\(88\)90151-1](https://doi.org/10.1016/0378-8741(88)90151-1)

43. Vennila V, Udayakumar R. Antibacterial activity of *Croton bonplandianum* (Bail. Against some bacterial isolates from infected wounds. *Br Microbiol Res J*. 2015;5(1):83-93. <https://doi.org/10.9734/BMRJ/2015/12620>

44. Keerthana G, Kalaivani MK, Sumathy A. In-vitro alpha-amylase inhibitory and antioxidant activities of ethanolic leaf extract of *Croton bonplandianum*. *Asian J Pharm Clin Res*. 2013;6(4):32-6.

45. Patel AS, Sinha A, Katiyar P, Kushwaha K. A review of traditional and pharmacological uses of *Croton bonplandianum* with special reference to the phytochemical aspect. *World J Pharm Res*. 2024; 13(11):187-200. <https://doi.org/10.20959/wjpr202411-32487>

46. Khanra K, Panja S, Choudhuri I, Chakraborty A, Bhattacharyya N. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by *Croton bonplandianum* Baill. leaves. *Nanomed J*. 2016; 3(31):15-2215. <http://dx.doi.org/10.7508/nmj.2016.01.002>

47. Ramachandran S, Nandha S, Kumar, Dhana Raju MD. Wound healing effect of herbal extract ointments using *Croton bonplandianum* and *Vitex negundo* leaf extracts. *Int J Pharmac Biol Sci*. 2009; 3(1):117-20.

48. Karuppiah Vijayamuthuramalingam UD, Rajaram R, Kuppusamy KM, Jonnalagadda B, Arokiasamy S. Anti-hyperglycemic and antioxidant potential of *Croton bonplandianum* Bail fractions in correlation with polyphenol content. *Iran J Basic Med Sci*. 2017;20(12):1390-1397. <https://doi.org/10.22038/IJIBMS.2017.9623>

49. Divya S, Naveen Krishna K, Ramachandran S, Dhanaraju MD. Wound healing and in vitro antioxidant activities of

Croton bonplandianum leaf extract in rats. *Global J Pharmacol.* 2011;5(3):159-63.

50. Lopes e Lopes MI, Saffi J, Echeverrigaray S, Henriques JNP, and Salvador M. Mutagenic and antioxidant activities of *Croton lechleri* sap in biological systems. *J Ethnopharmacol.* 2004; 95(2-3):437-445. <https://doi.org/10.1016/j.jep.2004.08.025>

51. Green LC, Wagner, Glogowski DA. Analysis of nitrite and (15N) nitrate in biological fluids. *Anal Biochem.* 1982; 165:215-219. [https://doi.org/10.1016/0003-2697\(82\)90118-X](https://doi.org/10.1016/0003-2697(82)90118-X)

52. Thenmozhi M, Vasuki K, Dhanalakshmi M, Devi K. Evaluation of anti inflammatory potential of *Croton bonplandianum* bail leaf. *Int J Pharm Biol Sci.* 2013; 9-12.

Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic-resistant inhibitors on *Escherichia coli*. *BMC Compl Altern Med.* 2010; 10(9):2-8. <https://doi.org/10.1186/1472-6882-10-9>

53. Sridhar N, Sasidhar D, Kanthal LK. Comparative antinflammatory and antioxidant Evaluation of *Jatropha gossypifolia* and *Croton bonplandianum*. *Int J Res Pharm Sci Technol.* 2014; 4(1): 16-27.

54. Althaf FD, Sudaroli M, Mohammed Salman I. In vitro anti- inflammatory activity of *Vitex leucoxylon* Linn. leaves by HRBC membrane stabilization. *Int J Pharm. Life Sci.* 2013; 4(1):2278-2281.

55. Nazer S, Ravikumar S, Williams PG, Ali MS, Suganthi P. Screening of coastal plant extracts for larvicidal activity of *Culex quinquefasciatus*. *Ind J Sci Technol.* 2009; 2:24-27. <https://doi.org/10.17485/ijst/2009/v2i3.2>

Review Article

Article History

Received: 19.06.2025

Revised: 15.07.2025

Accepted: 23.07.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Dwivedi RK, Chandola P. Dwindling Field Botanists at the Cost of Wet Lab Fundings in India: A Threat to Botanical Science and Biodiversity Conservation. *PhytoTalks*. 2025; 2(2): 340-344.

Dwindling Field Botanists at the Cost of Wet Lab Fundings in India: A Threat to Botanical Science and Biodiversity Conservation

Rakesh Kumar Dwivedi^{ID*} and Pawanika Chandola^{ID}

Department of Botany, Bhakt Darshan Govt. P.G. College, Jaiharikhali, Uttarakhand

*Corresponding author Email: rdiqac@gmail.com

Abstract

Classical Field botanists have long been India's foremost source of botanical information for the investigation, authenticating, and conservation of the country's flora. India is well-known for its wide-ranging phytodiversity and rich plant legacy. Over the past few years, there has been a worrying decline in the numbers of field botany research steered in India. This has far-reaching insinuations for the conservation of phytodiversity and the understanding of ecological processes. There has been a drive in preferred funding towards molecular biology and biotechnology, which has resulted in the negligence of the crucial work of documenting and maintaining plant species in their natural environments. This tendency not only makes it more problematic to find new species, but it also makes it more tough for botanists to keep an eye on and defend the species that have already existed. The decline in traditional botanical knowledge, which has been passed down through cohorts of field botanists, makes the problem even worse. This loss of information has the possibility to lead to undesirable breaks in our understanding about plant ecology, dispersal, and environmental interactions. Several fields, including horticulture, agriculture, pharmaceuticals, and environmental administration, are among those that will be affected by this alteration, which has impacts that exceed beyond the realm of academic circles. Without all-inclusive field studies, the skill to identify valuable plant characters for medications or crop upgrading is inadequate. The deficiency of up-to-date botanical data also hampers actual protection and ecosystem supervision. Tackling these encounters needs strategies that poise field and lab research—via devoted backing, amalgamation of conventional and contemporary methods, and alliance among field botanists and molecular biologists to better appreciate India's phytodiversity.

Keywords: Field botany, Funding, Phytodiversity conservation, Regional flora, Molecular Biology.

1. Introduction

India is an amiable home to an incredible phytodiversity that goes beyond the 18,000 species of flowering plants that are already reported to exist. The well-known biodiversity hotspots of India hold a great deal of probable for forthcoming findings¹. Several plant species that have not been documented can be found in the Eastern Himalayas, Andaman-Nicobar Islands, and the Western Ghats. These areas are notable by their diverse but distinct ecosystems and their peculiar geographical remoteness which offer these locations a diverse landscape, specific microclimates, and controlled human disturbance that are the perfect conditions to establish and to evolve indigenous flora. As a result, these conserved areas are good targets for botanical research and study².

The retardation in research related to field botany in India has serious consequences for the safety of biodiversity and the acquaintance of ecological systems.

In the recent past amazingly there has been a movement in funding towards molecular biology and biotechnological research projects, which has ensued in the negligence of the crucial work of documenting and upholding plant species in their natural environments. The All India Coordinated Project on Taxonomy seems to be the last such effort in the early 2000s by the Ministry of Environment and Forests, Government of India, which was focused on capacity building in the field of botany³. During that project, researchers had been trained in plant taxonomy; however, except for a few of them, most of the trained persons could not get the position of scientist in the Botanical Survey of India and other institutes. This is an irony that a trained person is not getting a job with his/her expertise, for which he/she devoted important years of life. Besides this, it is quite difficult for the faculty also to get grants for the projects related to classical botany.

This drift not only makes it more tough to find new species, but it also makes it more problematic for us to keep an eye on and protect the species that already exist. The decline in traditional botanical knowledge, which has been propagated through generations of field botanists, makes the situation even worse. This lack of information has the probable to lead to gaps in our contemplation regarding plant ecology, interactions, and distribution within ecosystems. Several related fields, comprising agriculture, herbal drug, and environmental management, are among those that will be obstructed by this disagreeable transformation, which has consequences that rise above beyond the academia.

Without systematic field research, we are strictly limited in our capability to identify and exploit valuable plant characteristics for the creation of medications or crop improvement. Furthermore, the lack of latest botanical data hampers the creation of effective conservation plans and strategies for ecosystem management. To address these issues when they arise, policy procedures that indorse a well-adjusted approach amid laboratory and field sciences must be put into place. To attain a more exhaustive understanding of plant biodiversity, this may necessitate providing specialized funding for field botany research, integrating traditional botanical techniques with

contemporary technologies, and inspiring cooperation concerning molecular biologists and field botanists.

2. Field Botanists' Contribution to India's Botanical Heritage

The Botanical Survey of India (BSI), the Forest Research Institute (FRI), and several universities and allied institutions are among the groups that were once centers of concentrated fieldwork. Their work laid the basis for India's national biodiversity plans, which were later put into effect. Field botanists contribute suggestively to our understanding of plant biodiversity and ecosystems. Several scientific and practical applications help from their expertise in identifying, sorting, ordering, and gathering plant species in their natural environments. Field botanists play a decisive role in the creation of all-inclusive flora and plant monographs, which serve as indispensable references for researchers, conservationists, and policymakers⁴. Furthermore, their research aids in the expansion of conservation plans and ecological rebuilding projects, which support the protection of threatened plant species and delicate ecosystems.

The aids of practicing botanists excel the boundaries of virtuous scientific knowledge. Their efforts are critical to the protection of ethnobotanical knowledge, which includes the routine uses of plants for a range of purposes, such as medicinal, cultural, and economic ones. Because it may result in the identification of species with noteworthy ecological, agricultural, and medicinal value, this suggestion is particularly beneficial for indigenous populations. Establishments such as the Forest Research Institute (FRI), the Botanical Society of India (BSI), and numerous academies have been at the vanguard of conducting all-embracing fieldwork since the commencement of time. The basis for our present-day knowledge of plant diversity and distribution has been recognized by this⁵.

These institutions have played a vital role in the teaching of many generations of practicing botanists and in upholding vast herbarium collections that remain treasured resources for contemporary research and protection efforts.

3. Field Botany Decline: Patterns and Proof

The general acceptance that fieldwork is obsolete or less imperative than laboratory-based research is known as "side-lining." Field botanists contribute pointedly to our understanding of plant biodiversity and ecosystems. The contributions of practicing botanists excel the boundaries of purely scientific knowledge. Their efforts are decisive to the preservation of ethnobotanical knowledge, which involves the customary uses of plants for a range of purposes, such as medicinal, cultural, and economic ones. Because it may result in the documentation of species with noteworthy ecological, agricultural, and medicinal value, this information is particularly valuable for indigenous populations⁶. Throughout past, several universities, and dedicated research institutes such as the Botanical Survey of India (BSI) and Forest Research Institute (FRI), have been at the leaders of all-embracing fieldwork. The footing for our present acquaintance of plant distribution and diversity was established by these national organizations. These organizations have played a vital role in the training of several groups of practicing botanists and in maintaining vast herbarium collections that remain valued possessions for contemporary research and conservation efforts.

4. Bias in Funding and Policy for Wet Labs

Both botanical research and conservation efforts are pointedly obstructed by the prominence on molecular approaches in terms of backing and funding policy. The sharing of resources has become significantly unstable because of the thrust areas like proteomics, genomics, and gene editing technologies like CRISPR. Equated to more orthodox institutions like field stations and herbariums, molecular laboratories have gotten an unequal expanse of support. This inequality affects not just how funds are distributed but also how research primacies are set and how scientific knowledge attains cutting-edge. Moreover, most of the erudite apparatus found in botany labs—such as the scanning electron microscope (SEM), the microtome, and other similar classical instruments are either out-of-date or impractical due to a lack of money. In addition to triggering financial discrepancies, this prejudice in wet labs has other consequences also. For Instance, a key element of the scientific method is the capability to reproduce and authenticate scientific findings, which is

hindered by the failure to gather voucher specimens. Also, a worrying trend has resulted from the undervaluation of plant taxonomy, even ecological research now profoundly depends on automated or unconfirmed species identifications in the era of artificial intelligence. The exactness and reliability of assessments of biodiversity may be endangered by this lack of gratitude. Funding requests related to biodiversity that give DNA barcoding precedence over conventional taxonomic techniques further highlight this change in importance. As a result, there is a likelihood that crucial morphological and ecological information that cannot be captured through molecular techniques alone would be ignored.

5. Implications for Conservation and Biodiversity

The loss of newly revealed species is not the only factor causative to the decline in botanical expertise. As such, it impacts our capacity to comprehend and efficiently manage whole ecosystems. Because they don't fully recognize plant diversity, investigators find it stimulating to appraise the pliability and health of ecosystems. They might thus oversee significant indicators of ecological change. Unproductive responses to ecological issues like climate change, offensive species, and other ecological pressures may arise from the partial understanding of the complicated relationships that exist among plants and their environments. Another interesting facet is that the loss of botanic knowledge has consequences for many different scientific areas and industries, for instance, pharmaceutical research, which often exploits molecules derived from plants, may miss chances to create new drugs.

Agricultural inventions may be hindered by a lack of systematic understanding of plant genetics and ecology, particularly when it comes to crop improvement and pest control. Additionally, the field of ethnobotany, which studies in what way aboriginal communities have conventionally used plants, faces the risk of losing imperative knowledge about cultural and medicinal customs connected to the local flora. As our botanical skill declines, so does our capability to fully identify and exploit the plant world's massive potential for scientific, economic, and cultural benefits⁷. Deprived field data can lead to a decrease in strategical support, which has major penalties for ongoing conservation efforts. Because they lack admittance to precise and

up-to-date field data, legislators are often forced to trust in inadequate or obsolete data. Consequently, conservation tactics are created that are either unproductive or imprecise. The inappropriate distribution of resources due to a lack of knowledge may cause chief habitats or threatened species to be ignored.

The lack of all-inclusive field data makes it more thought-provoking to track and respond to rapidly shifting environmental conditions, which is predominantly challenging given the occurrence of climate change. The efficiency of initiatives to conserve phytodiversity may ultimately be threatened because of conservation programs' inability to cope with recently discovered threats or adjust to altering ecological dynamics. The loss of conventional ecological acquaintance has significantly laden our understanding of local ecosystems and sustainable resource management techniques. This, along with a decline in field skill, poses numerous significant challenges in present day botanical explorations. Botanists and field researchers bear a major accountability for authenticating and conserving indigenous knowledge regarding the use of plants, cultivation methods, and cultural practices related to local flora⁷. This invaluable acquaintance has been gathered over many generations and often contains the surreptitious to both potential discoveries in a few selective fields like ethnopharmacology and sustainable land management. As this knowledge endures to worsen without being sufficiently recognized and incorporated into scientific study, we are at risk of losing invaluable insight into the dynamics of environmental problems and possible solutions to environmental anxieties. The importance of upholding and growing field expertise is further highlighted by the growing effects of climate change and habitat degradation, which are radically changing ecosystems and abolishing biodiversity at a rapid rate never seen.

6. The Path Ahead: Overcoming Disparities

To tie the gap amid field botany and molecular biology, a multifaceted tactic is desirable. Revitalizing interest in field botany is decisive, and the first step in doing so is to make field training a prerequisite for undergraduate and graduate programs. This practical knowledge will expose

students to the practical aspects of botany and help them to develop a greater indebtedness for field work. Additionally, the facility of fellowships and jobs in the field of plant sciences might result in the delivery of excellent opportunities for prospective botanists to get practical knowledge and contribute to continuing research projects.

Another vital step that needs to be taken to address the current inequity is rebalancing the funding for plant-based research. If we mandate that an explicit percentage of the funds for biodiversity research be used for field-based activities, we can safeguard that critical field studies by providing required resources⁸. This method should be reinforced by assisting with long-term ecological monitoring plots and herbaria digitization projects, which afford decisive information for field and molecular botanists and plant biotechnologists. Additionally, the expansion of partnership amid molecular labs and field botanists depends on the reassurance of knowledge and practice sharing between the two vital groups, which requires the support of organizations and plans⁹.

Field botany may become more attractive and more fruitful if it makes better use of digital tools like GPS mapping, drone surveys, and artificial intelligence-assisted methods. Reinforcement of the institutions which are dedicated to botanical research and education will provide a robust foundation for the field of botany's ongoing growth and development¹⁰. The following suggestions might be helpful in this direction:

1. Field training should be compulsory for both undergraduate and graduate students.
2. Offer grants and placements in the botanical sciences.
3. Demand that field-based research be reinforced with a specific and dedicated percentage of the funds allotted for biodiversity research considered as thrust areas.
4. Funding should be offered for the digitization of herbaria and long-term ecological monitoring designs.
5. Alliances between molecular botanists and field botanists should be encouraged.
6. To revolutionize classical botany, use of digital methods like drone surveys, GPS mapping, and AI-assisted approaches should be recommended.

7. Monetary and human possessions should be made accessible to strengthen establishments such as the BSI, FRI and state herbaria.

7. Conclusion

Contemporary research laboratory skills must be united with conventional field botany to assure India's continual accomplishment in the botanical world. The circumstantial and ground-truthing data that field botany provides cannot be replicated by molecular skills. To appropriately understand DNA data and create all-inclusive conservation plans, field botanists are imperative for thorough understanding of ecosystems, plant relationships, and local biodiversity. The use of modern laboratory techniques improves our understanding of botanical diversity at the molecular level by providing hitherto unattainable insights into plant genetics, evolution, and biochemistry. To protect India's botanical inheritance, organisations, educational establishments, and financial agencies must stand-in the reciprocal beneficial relationship between field botany and laboratory sciences. This amalgamation is vital for national biodiversity protection. If it promotes collaboration between molecular botanist and field botanists, India could create wide-ranging tactics to plant taxonomy, ecology, and conservation. The identification of new plant species that may have considerable marketable or therapeutic value, the control of invasive species, and the effects of climate change on flora are just a few of the encounters that will require this multidisciplinary method. The future of Indian botany lies in creating researchers who are equally skilful at molecular analysis and field observations. This will promise a complete understanding of the country's rich botanical resources.

Acknowledgements

The authors extend their sincere gratitude to the Principal, Bhakt Darshan Government P.G. College, Jaiharikhali for the facilities and necessary support.

Authors Contributions

RKD conceptualized the study, and PC was responsible for data compilation. Both authors reviewed and approved the final draft prior to submission.

Data Availability

No new data was generated or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of interest

The authors declare no conflict of interest.

References

1. Nayar, M. P. Hot Spots of Endemic Plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, 1996.
2. MoEFCC. India's Sixth National Report to the Convention on Biological Diversity. 2020. <https://chm.cbd.int/database/record?documentID=241351>
3. Haque M. All India Cooperative Programme on Capacity Building in Taxonomy (AICOPTAX): An Overview. *J-Global*. 2003; 175-91-99. https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902208414144952
4. Prance, G.T. The importance of fieldwork in modern taxonomy. *Bot J Linn Soc*. 2001; 135(2): 143–149.
5. Ahmedullah M, Sathish Kumar C, Manilal KS. Strategies for Popularisation of Taxonomy in India. *Rheedea*. 2017; 27(2): 59–70. <https://dx.doi.org/10.22244/rheedea.2017.27.2.11>
6. Ramakrishnan PS, Rai RK, Katwal RPS. Traditional ecological knowledge for managing biosphere reserves in South and Central Asia. UNESDOC Digital Library. 2002; pp.536. <https://unesdoc.unesco.org/ark:/48223/pf0000127005>
7. Noss RF. Indicators for monitoring biodiversity: a hierarchical approach. *Conserv Biol*. 1990; 4, 355–364. <https://doi.org/10.1111/j.1523-1739.1990.tb00309.x>
8. Woodland DW. Are botanists becoming the dinosaurs of biology in the 21st century? *S Afr J Bot*. 2007; 73: 343–346. <https://doi.org/10.1016/j.sajb.2007.03.005>
9. Funk VA. Floras: a model for biodiversity studies or a thing of the past? *Taxon*. 2006; 55: 581–588.
10. Dobzhansky T. Are naturalists old-fashioned? *Am Sci*. 1966 ;100: 541–550

Research Article

Article History

Received: 30.06.2025

Revised: 23.07.2025

Accepted: 28.07.2025

Available online

Version: 1

Additional Information

Peer review: The publisher expresses gratitude to the anonymous reviewers and sectional editors for their invaluable contributions during the peer review process.

Reprints and Permissions

Information

is available at:

https://phytotalks.com/journal/index.php/PT/open_acess_policy

Publisher's note: Regarding jurisdictional claims in published maps and institutional affiliations, PhytoTalks maintains its objectivity.

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

The authors retain copyright of their work. The journal allows the author(s) to hold the copyright and to retain publishing rights without restrictions.

Cite this article: Verma PK, Singh N, Negi R, Chandra A, Kishwan S. Forest Flora of Haryana: An Annotated Checklist. *PhytoTalks*. 2025; 2(2): 345-444.

Forest Flora of Haryana: An Annotated Checklist

Praveen Kumar Verma¹, Nidhan Singh², Ranjana Negi¹, Anup Chandra¹ and Shivam Kishwan¹

¹Forest Botany Division, ICFRE-Forest Research Institute, Dehradun (Uttarakhand)

²I.B. (PG) College, Panipat, Haryana, India

*Corresponding author Email: dr.pkverma2008@gmail.com

Abstract

Floristic composition across diverse geographic regions naturally changes over time naturally at a slower pace. However, the ongoing anthropogenic activities significantly impact these changes, usually towards negative side. This makes systematic monitoring crucial for effective protection of diversity and sustainable management. The Convention on Biological Diversity (CBD) underlines the significance of periodic biodiversity assessments. Prevailing Forest Floras provide vital information on regional woody plant species, but due to enduring ecological shifts, updated documentation is obligatory for adaptive strategies. In Haryana, floristic studies date back to the 19th century, with contributions from several botanists and institutions over the years. In spite of various scattered studies on the region's plant diversity, all-inclusive data on the forest flora of Haryana has been lacking. The current checklist treats this gap by documenting 512 species of angiosperms and gymnosperms found in Haryana's forests, including 227 tree species, 203 shrubs, and 82 climbers. This work forms a strong baseline for future floristic research, conservation efforts, and sustainable utilization of the state's forest biodiversity.

Keywords: Floristic diversity, Forest Flora, Haryana, Biodiversity monitoring, Angiosperms, Gymnosperms.

1. Introduction

Changes in the floristic diversity of different geographical locations over the years are imminent. However, owing to various anthropological factors, the rates of such change have increased, depending upon the intensity of anthropogenic and other factors of any area. Therefore, it is recommended that floristic diversity should be monitored at regular intervals, so that need based conservational or other actions may be taken up. The Convention on Biological Diversity (CBD), has also asserted the need for inventorization and monitoring of biodiversity at regular intervals for planning and sustainable utilization. Already existing Forest Floras provide valuable information about the woody floristic composition of the given region. However, over the years, due to various factors, species composition of the areas keeps on changing, thus demanding for updated documentation for making suitable strategies for management and conservation. Forest Flora contains invaluable information about the woody flora of the region. After the emergence of taxonomic research in India, several Forest Floras have been published by time to time by several Botanist includes Steward and Brandis¹, Beddome², Talbot³, Kanjilal⁴, Parker⁵, Osmaston⁶, Kanjilal⁷, Haridasan and Rao⁸, Naithani et al.⁹, Naithani¹⁰ Krishen¹¹ and Page et al.¹².

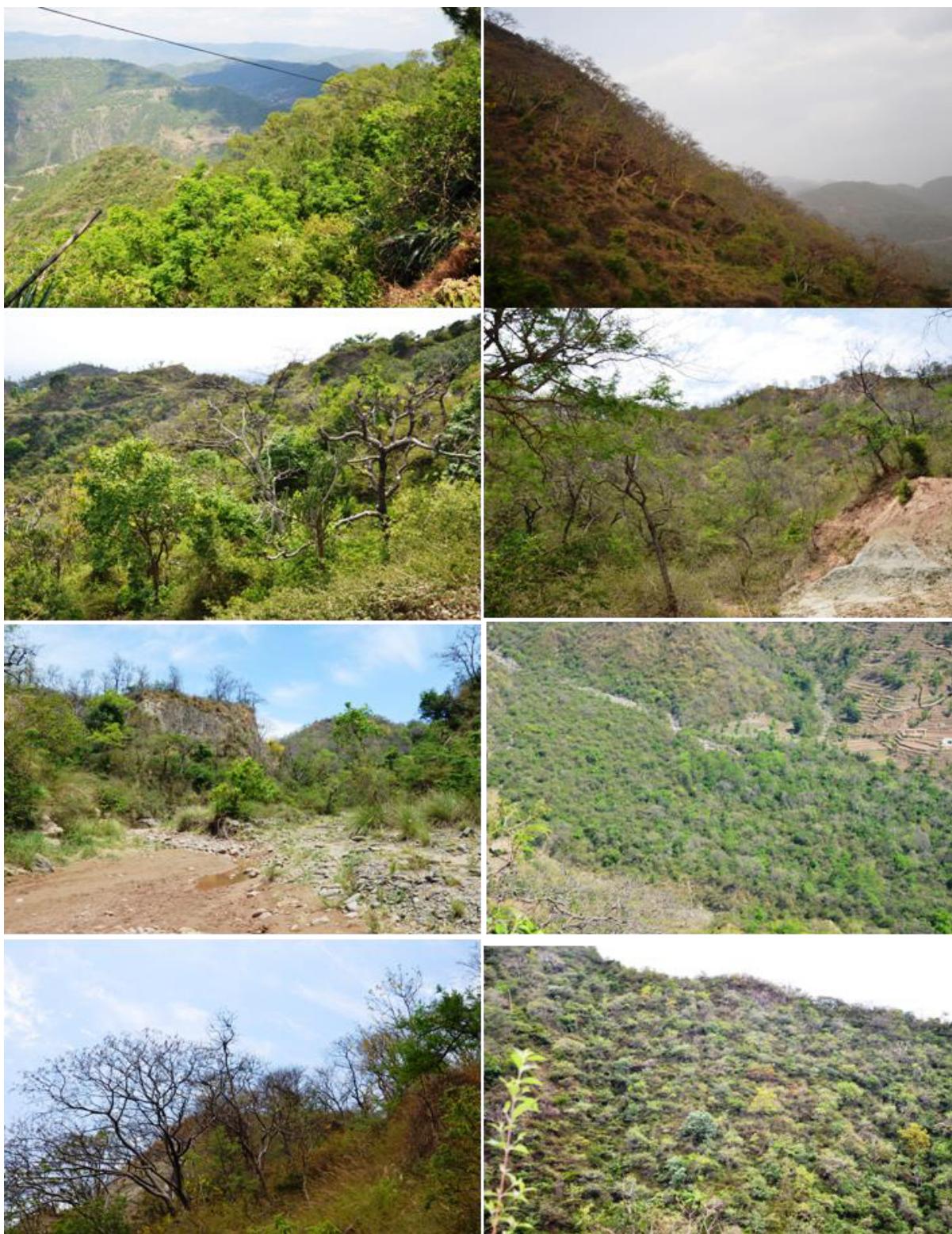
The state of Haryana was formed on the first of November 1966 because of reorganization of erstwhile Punjab.

The earliest record of plants from Haryana is found in Royle's¹³ 'Illustrations of botany and other branches of the natural history of the Himalaya Mountain of the *Flora of Kashmir*'. J.L. Stewart published a book on "Punjab Plants"¹⁴ and Aitchison published a list of the plants of Hoshiarpur district¹⁵. Their collections are housed in the Herbarium of Forest Research Institute, Dehradun. A few sheets of J.R. Drummond from Haryana are also preserved there. J.F. Duthie made a few references to the plants of Karnal, Kurukshetra, Hissar and Ambala in his "Flora of the Upper Gangetic Plains and of the Adjacent Siwalik and Sub – Himalayan Tracts"¹⁶.

Collett¹⁷ published 'Flora Simlensis' which covers the flowering plants of Simla and the neighborhood areas. A catalogue of the principal trees and shrubs of the Punjab was published by Conventry¹⁸. Bamber¹⁹ published "Plant of Punjab" and Kanjilal and Gupta²⁰ made some references to the plants of north-east Haryana in their "Forest Flora of Chakrata, Dehradun and Saharanpur Forest Divisions, Uttar Pradesh". Sabnis²¹ published the 'Flora of Punjab Plains and the Associated Hill Regions'. Among other significant publications worthwhile mentioning are Kaul^{22,23}.

Yadav and Singh²⁴ have worked on sedges and grasses of Kurukshetra. Several other workers have also contributed by publishing the checklists and new records on the flora of Haryana. The floristic wealth of the state has also been partly explored in the past in various floras and several theses have been completed on various districts of the state²⁵⁻³².

Jain³³ has described 1003 species of angiosperms belonging to 586 genera and 132 families. Kumar³⁴ has given a list of 1062 species under ca 583 genera representing 138 families. Recent past, Negi et al.³⁵ have


explored the Siwaliks of the state and published a Floristic diversity of the Siwaliks of Haryana. Apart from that, some sporadic work on floristics of Haryana has also been done by various workers from time to time³⁶⁻⁵⁸, but no concrete and consolidated data is available on the floral wealth of the forest. However, for judicial utilization of floristic diversity of the forest, the present checklist enumerated 512 species of angiospermic and gymnospermic plants which includes 227 Trees, 203 Shrubs and 82 Climbers.

2. Materials and Methods

The states of Punjab, Himachal Pradesh, Uttar Pradesh, Delhi, and Rajasthan enclose Haryana. It features some outcrops of the Aravalli hill ranges in the south-west and a tiny northern section with hills of the Shiwalik range of the Himalaya. However, the fertile Indo-Gangetic Plains comprise most of the region. The drainage system is made up of the Saraswati, Markanda, and Tangri rivers along with their tributaries, as well as the Yamuna in the east and the Ghaggar in the west.

The state of Haryana is located between latitudes 27° 39' and 30° 55' N and longitudes 74° 28' and 77° 36' E. Its overall size is approximately 44,222 square kilometers. The tallest mountain is located at Morni in the Ambala district, and the elevation ranges from 225 to 1500 meters above mean sea level.

According to FSR 2021, the State's total forest cover is 1,559 km², of which 28 km² are in extremely dense forest, 445 km² are in moderately dense forest, and 1,130 km² are in open forest. Ten Sub-Forest Types are further subdivided into the three Forest Type Groups—Tropical Dry Deciduous Forest, Tropical Thorn Forest, and Subtropical Pine Forest—that comprise the forests of Haryana (Figs. 1-3).

Figure 1. Views of different type of Forest vegetation at Shiwalik range of Haryana

Figure 2. Views of different type of Forest vegetation at Aravalli Range of Haryana

Figure 3. Views of different type of Forest vegetation at plains of Haryana

The systematic survey has been conducted in various seasons at various locations, including Ambala, Kaithal, Kurukshetra, Yamuna Nagar, Morni-Pinjore, Jind, Hisar, Fatehabad, Bhiwani, Sirsa, Gurugao, Faridabad, Palwal, Mewat, Rewari, Mahendragarh, Rohtak, Karnal, Panipat, Sonipat, and Jhajjar, to obtain comprehensive information on the species distributed in the various forest divisions of Haryana. From 2015 to 2017, in-depth field surveys were carried out throughout Haryana. Plant specimens were gathered for the surveys using the floristic survey standard procedure with field notes. With the aid of several wild floras, the plants were recognized. The Forest Research Institute's DD Herbarium in Dehradun, Uttarakhand (India) provided the verified plant specimens.

For the convenience of the readers, excellent quality photos of the plants that were taken during the field surveys have also been added to this article in 54 photo plates where the plants are arranged alphabetically. Similarly, a thorough table containing all pertinent information about the plants on the list is also accessible (Table 1).

3. Results

Following a thorough field survey conducted in Haryana from 2015 to 2017, the entire region was examined and divided into three zones:

3.1. The Aravalli Ranges and Sandy tracts: It is India's oldest fold mountain range, an eroded stub of ancient mountains. Haryana's Northern Aravalli range experiences hot, semi-arid continental summers and comparatively cold winters due to its humid subtropical climate. The low hills known as the Aravallis stretch from

Delhi's boundaries to Rajasthan via the districts of Faridabad, Mewat, Gurgram, Rewari, Mehendragarh, and Bhiwani. Most of these hills are barren. The areas that border Rajasthan's desert are home to sandy plains, where the vegetation is very regular and scarce. Only those drought resistant species constitute the permanent structural framework of vegetation. The natural vegetation survives only in a few pockets. The main vegetation of the area are *Balanites aegyptiaca*, *Cordia sinensis*, *Prosopis cineraria*, *Salvadora oleoides*, *Tecomella undulata*, *Senegalia senegal*, *Terminalia pendula*, *Vachellia leucophloea*, *Clerodendrum phlomidis*, *Searsia mysorensis*, *Capparis decidua*, *Lycium barbarum*, *Gymnosporia emarginata*, *Grewia tenax*, *Commiphora wightii*, *Ziziphus nummularia* in tree and shrub layers while *Cissampelos pareira*, *Capparis zeylanica*, *Celastrus paniculatus*, *Leptadenia reticulata*, *Ichnocarpus frutescens*, *Cocculus hirsutus*, *Ephedra foliata* and *Tinospora cordifolia* in climbers.

3.2. Shiwalik Ranges: The elevation of these hills ranges from 600 to 1200 meters above sea level, and they span around 2400 kilometers with an average width of 20 to 24 kilometers. Numerous erosional landform features, including rills, gullies, scraps, differently shaped ridges, and amphitheater basins, have been created by weathering and denudation. Tropical dry deciduous forests with a profusion of prickly species are what define these hills. These ranges are distinguished by the following forest types:
i. Sal forests which is mainly confined in Kalesar National Park (KNP) and dominated with *Shorea robusta* as main species intermixed with *Mallotus philippensis*, *Mitragyna parvifolia*, *Ehretia laevis*, *Ficus*

semicordata, *Adina cordifolia*, *Kydia calycina*, *Holarrhena pubescens*, *Schleichera oleosa*, *Ficus racemosa*, *Sterculia villosa*, *Terminalia alata* in tree layer, *Clerodendrum infortunatum*, *Justicia adhatoda*, *Helicteres isora*, *Carissa spinarum*, *Catunaregam spinosa*, *Woodfordia fruticosa* in shrub layer and *Phanera vahlii*, *Celastrus paniculatus* and *Millettia extensa* in climber layer.

ii. Chir forests are only confined in upper edges of Morni hills which consists of *Pinus roxburghii*, *Adina cordifolia*, *Pyrus pashia*, *Falconeria insignis*, *Pistacia chinensis* subsp. *integerrima* and *Quercus leucotrichophora* in tree layer, *Euphorbia royleana*, *Berberis lycium*, *B. asiatica*, *Rubus ellipticus* and *Rhus parviflora* in shrub layer while in climber layer *Clematis gauriana* and *Millettia extensa* are common.

3.3. Miscellaneous forests: Large tracts of land in the Kalesar Reserve Forest, Pinjore, and Morni Hills in the Shiwaliks are covered by diverse plants. The main species of these forests are: *Terminalia elliptica*, *Terminalia anogeissiana*, *Senegalia catechu*, *Boswellia serrata*, *Aegle marmelos*, *Senegalia modesta*, *Vachellia leucophloea*, *Adina cordifolia*, *Bauhinia racemosa*, *Buchanania lanzan*, *Casearia tomentosa*, *Bombax ceiba*, *Butea monosperma*, *Mitragyna parvifolia*, *Pachygone laurifolia*, *Cassia fistula*, *Dalbergia sisso*, *Ehretia laevis*, *Flacourtie jangomas*, *Ficus semicordata*, *F. palmata*, *F. auriculata*, *F. religiosa*, *F. benghalensis*, *Diospyros cordifolia*, *Kydia calycina*, *Holarrhena pubescens*, *Lannea coromandelica*, *Grewia optiva*, *Mallotus philippensis*, *Morus alba*, *Nyctanthes arbor-tristis*, *Pyrus pashia*, *Ougeinia ojeinensis*, *Schleichera oleosa*, *Shorea robusta*, *Sterculia villosa*, *Syzygium cumini*, *Wendlandia beynei* etc., and *Prosopis juliflora* (planted but become naturalized in several

forests), in tree layer. *Agave vivipara*, *Ipomea carnea*, *Justicia adhatoda*, *Barleria cristata*, *Helicteres isora*, *Carissa spinarum*, *Catunaregam spinosa*, *Strebulus asper*, *Lantana camara*, *Ziziphus nummularia*, *Rhus parviflora*, *Rubus ellipticus*, *Bergera koenigii*, and *Woodfordia fruticosa* in shrub layer. The climbers are comprising *Ziziphus oenoplia*, *Ipomea cairica*, *Vallaris solanacea*, *Ampelocissus latifolia*, *Cryptolepis buchanani*, *Jasminum multiflorum*, *Celastrus paniculatus*, *Pueraria tuberosa*, *Tinospora cordifolia*, *Capparis zeylanica* and *Cissampelos pareira* etc.

Aside from them, the vast majority of Haryana is covered with plains and its vegetation. In addition to native species, the Haryana plains are home to exotic plants cultivated through social forestry and other initiatives, as well as numerous other floristic aspects of the Indian subcontinent. The species of plains includes *Populus deltoides*, *Corymbia citriodora*, *Eucalyptus tereticornis*, *Eucalyptus camaldulensis*, *Eucalyptus paniculata*, *Fernandoa adenophylla*, *Tectona grandis*, *Dalbergia sissoo*, *Prosopis juliflora*, *Salvadora oleoides*, *Mangifera indica*, *Holoptelea integrifolia*, *Kigelia africana*, *Toona ciliata*, *Syzygium cumini*, *Terminalia arjuna*, *Ailanthus excelsa*, *Ficus virens*, *F. racemosa*, *Grevillea robusta*, *Vachellia nilotica* subsp. *indica*, *Lagerstroemia speciosa*, *Terminalia bellirica*, *Albizia lebbeck*, *Alstonia scholaris*, *Azadirachta indica*, *Bombax ceiba*, *Senegalia senegal*, *Spondias pinnata*, *Tamarix dioica*, *Melia azedarach*, *Neolamarckia cadamba*, *Phoenix sylvestris*, *Chukrasia tabularis*, *Dendrocalamus strictus*, *Mimusops elengi*, *Polyalthia longifolia*, *Leucaena leucocephala*, *Ricinus communis*, *Calotropis procera*, *Ziziphus nummularia* and *Dodonaea viscosa*.

Table 1. Complete List of Ligneous Plant species of Haryana

S. No.	Plant Name	Vernacular Name	Family	Habit	Native/Planted	Shiwalik Range	Aravalli Range	Plains
1.	<i>Abelmoschus moschatus</i> Medik.	Muskdana	Malvaceae	Shrub	Native	-	Gurugram, Rewari, Bhiwani, M. Garh	Ambala, Kaithal
2.	<i>Abrus precatorius</i> L.	Ratti	Fabaceae	Climber	Native	Morni hills	M. Garh, Rewari, Bhiwani, Mewat, Gurugram	Ambala, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Sirsa, Yamuna Nagar
3.	<i>Abutilon bidentatum</i> Hochst.	Dongara	Malvaceae	Shrub	Native	-	Gurugram, Rewari, Bhiwani, M. Garh	Rohtak, Jind
4.	<i>Abutilon indicum</i> (L.) Sweet	Attibala, Kanghi	Malvaceae	Shrub	Native	KNP, Morni hills	Gurgaon, M. Garh, Mewat, Rewari, Faridabad, Bhiwani	Ambala, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Sonipat,
5.	<i>Abutilon pannosum</i> (Forst.f.) Schlect	Attibala, Kanghi Buti	Malvaceae	Shrub	Native	KNP	M. Garh, Rewari, Bhiwani	-
6.	<i>Abutilon ramosum</i> (Cav.) Guill. & Perr.	Kanghi	Malvaceae	Shrub	Native	-	-	Hisar
7.	<i>Achyranthes aspera</i> L.	Latjira, Chitchita	Amaranthaceae	Shrub	Native	Common	Common	Common
8.	<i>Adansonia digitata</i> L.	Gorakhimali	Bombacaceae	Tree	Planted	-	Gurugaon	-
9.	<i>Adenanthera microsperma</i> Teijsmann & Binnendijk	Badi Gumachi, Rakat Chandan	Fabaceae	Tree	Planted	-	-	Ambala, Gurgaon, Kurukshetra, Yamuna Nagar
10.	<i>Adina cordifolia</i> (Roxb.) Brandis	Haldu	Rubiaceae	Tree	Native	KNP, Morni hills	-	-
11.	<i>Aegle marmelos</i> (L.) Correa	Bel	Rutaceae	Tree	Native	Common	Common	Common
12.	<i>Aerva javanica</i> (Burm.f.) Juss. ex Schult.	Bui, Dholi	Amaranthaceae	Shrub	Native	KNP, Morni hills	-	-
13.	<i>Agathis robusta</i> (C. Moore ex F. Muell.) F.M. Bailey	Agathis	Araucariaceae	Tree	Planted	Morni hills	-	-
14.	<i>Agave vivipara</i> L. (syn. <i>Agave cantula</i> Roxb.)	Ram Baans	Asparagaceae	Shrub	Planted (Naturalized)	KNP, Morni hills	-	-
15.	<i>Ailanthus excelsa</i> Roxb.	Mahaneem, Motio Neem, Oollu Neem	Simaroubaceae	Tree	Planted	Common	Common	Common

16.	<i>Albizia chinensis</i> (Osbeck) Merr.	Siran	Fabaceae	Tree	Native	KNP, Morni hills	-	-
17.	<i>Albizia lebbeck</i> (L.) Benth.	Siran, Kala Siris	Fabaceae	Tree	Native	KNP, Morni hills	Faridabad, Gurgaon, M. Garh, Mewat	Almost all over the state
18.	<i>Albizia odoratissima</i> (L.f.) Benth.	Kala Siris	Fabaceae	Tree	Native	Morni hills	-	-
19.	<i>Albizia procera</i> (Roxb.) Benth.	Safed Siris	Fabaceae	Tree	Native	KNP, Morni hills	Bhiwani, Faridabad, Gurgaon, M. Garh, Mewat, Rewari	Almost all over the state
20.	<i>Albago maurorum</i> Medik.	Jawasa, Bharbharra	Fabaceae	Shrub	Native	-	-	Hisar, Jhajjar, Jind, Karnal, Kurukshetra, Panipat, Rohtak, Ambala
21.	<i>Alstonia scholaris</i> (L.) R. Br.	Saptparni	Apocynaceae	Tree	Native	KNP, Morni hills	Bhiwani, Faridabad, Gurgaon, M. Garh, Mewat, Rewari	Almost all over the state
22.	<i>Ampelocissus latifolia</i> (Roxb.) Planch.	Jangali Angur	Vitaceae	Climber	Native	Morni hills	-	-
23.	<i>Annona squamosa</i> L.	Shareefa	Annonaceae	Tree	Planted	Common	Common	Common
24.	<i>Antidesma acidum</i> Retz.	Amaliya Beri	Phyllanthaceae	Shrub	Native	KNP	-	-
25.	<i>Antigonon leptopus</i> Hook. & Arn.	Anant Lata	Polygonaceae	Climber	Planted	Morni hills	-	Yamuna Nagar
26.	<i>Ardisia solanacea</i> (Poir.) Roxb.	Bissi	Myrsinaceae	Shrub	Native	KNP, Morni hills	-	-
27.	<i>Artobotrys hexapetalus</i> (L.f.) Bhandari	Harit Champa	Annonaceae	Tree	Planted	Morni	-	Gurgaon, Kurukshetra,
28.	<i>Artocarpus heterophyllus</i> Lam.	Kathal	Moraceae	Tree	Planted	Common	Common	Common
29.	<i>Artocarpus lacucha</i> Buch.-Ham.	Badhal	Moraceae	Tree	Native	Common	Common	Common
30.	<i>Asclepias curassavica</i> L.	Kakatundi	Apocynaceae	Shrub	Invasive	Morni hills	-	Gurugram

31.	<i>Asparagus adscendens</i> Roxb.	SatawariSaf ed Mushali	Asparagaceae	Shrub	Native	KNP, Morni hills	-	-
32.	<i>Asparagus racemosus</i> Willd.	Narkanto, Satawar	Asparagaceae	Shrub	Planted	Common	Common	Common
33.	<i>Aspidopterys wallichii</i> Hook. f.	Jugtar	Malpighiaceae	Climber	Native	Morni hills	-	-
34.	<i>Atriplex nummularia</i> Lindl.	Orach	Amaranthaceae	Shrub	Invasive	-	-	Hisar
35.	<i>Averrhoa carambola</i> L.	Kamrakh	Oxalidaceae	Tree	Planted	Common	Common	Common
36.	<i>Azadirachta indica</i> A Juss.	Neem	Meliaceae	Tree	Native	Common	Common	Common
37.	<i>Balanites aegyptiaca</i> (L.) Delile	Huingota, Hingot, Hingori, Hingli	Zygophyllaceae	Tree	Native	-	Bhiwani, Faridabad, Gurgaon, M. Garh, Rewari	Karnal, Kurukshetra, Mewat, Palwal, Panipat
38.	<i>Baliospermum montanum</i> (Willd.) Muell-Arg.	Jangali Jamalgota	Euphorbiaceae	Shrub	Native	KNP, Morni hills	-	-
39.	<i>Bambusa bambos</i> (L.) Voss	Kata Baans	Poaceae	Shrub	Native	Common	Common	Common
40.	<i>Barleria acanthoides</i> Vahl	Bajardanti, Chapari	Acanthaceae	Shrub	Native	-	Rewari	-
41.	<i>Barleria cristata</i> L.	Niljhatti	Acanthaceae	Shrub	Native	KNP, Morni hills	Gurgaon, M. Garh, Mewat, Rewari, Faridabad, Bhiwani,	Almost all over the state
42.	<i>Barleria prionitis</i> L.	Peela Baansa	Acanthaceae	Shrub	Native	-	Gurgaon, M. Garh,	Ambala,Kaithal
43.	<i>Barringtonia acutangula</i> (L.) Gaertn.	Samudriphal	Lecythidaceae	Tree	Planted	Morni hills	-	Kurukshetra
44.	<i>Bauhinia purpurea</i> L.	<i>Gairal, Kachnari</i>	Fabaceae	Tree	Native	Common	Common	Common
45.	<i>Bauhinia racemosa</i> Lam.	Jhinja, Kachnari, Asundro	Fabaceae	Tree	Native	KNP, Morni hills	Rewari, Gurugram	-
46.	<i>Bauhinia variegata</i> L.	Kachnar, Papri	Fabaceae	Tree	Native	Common	Common	Common
47.	<i>Beaucarnea</i>	Elephant	Asparagaceae	Tree	Planted	-	Gurugram	Rohtak, Sonipat

	<i>recurvata</i> (K.Koch and Fintelm.) Lem.	Foot						
48.	<i>Berberis asiatica</i> Roxb. ex DC.	Kilmora	Berberidaceae	Shrub	Native	Morni hills	Pinjor (Panchkula)	-
49.	<i>Berberis lycium</i> Royle	Kasmodo, Kilmora	Berberidaceae	Shrub	Native	Morni hills	-	-
50.	<i>Bergera koenigii</i> L. [<i>Murraya koenigii</i> (L.) Spreng.]	<i>Gandela, Gani, Mithi Neem</i>	Rutaceae	Shrub	Native	Common	Common	Common
51.	<i>Biancaea decapetala</i> (Roth) O.Deg.	Kingan, Allai	Fabaceae	Climbing Shrub	Native	Morni hills	-	-
52.	<i>Bischofia javanica</i> Blume	Paniyala	Phyllanthaceae	Tree	Native	KNP	-	-
53.	<i>Bixa orellana</i> L.	Sindoori, Latkan	Bixaceae	Shrub	Planted	Morni hills	-	-
54.	<i>Boehmeria macrophylla</i> Horn em.	Badasiyaru	Urticaceae	Shrub	Native	Morni hills	-	-
55.	<i>Bombax ceiba</i> L.	Semal, Sembal	Bombacaceae	Tree	Native	Common	Common	Common
56.	<i>Borassus flabellifer</i> L.	Tai	Arecaceae	Tree	Planted	Common	Common	Common
57.	<i>Boswellia serrata</i> Roxb. ex Colebr.	Salar, Salai	Burseraceae	Tree	Native	KNP, Morni hills	M. Garh, Mewat, Rewari	
58.	<i>Bougainvillea spectabilis</i> Willd.	Buganbail, Boganwallia	Nyctaginaceae	Shrub	Planted	Common	Common	Common
59.	<i>Brenya vitis-idaea</i> (Burm.f.) C.E.C.Fisch.	Kamuni	Phyllanthaceae	Shrub	Native	Common	Common	Common
60.	<i>Bridelia retusa</i> (L.) A.Juss.	Kajhi	Phyllanthaceae	Tree	Native	KNP, Morni hills	-	Ambala, Kurukshetra
61.	<i>Broussonetia papyrifera</i> (L.) L'Hér. ex Vent.	Jangali Tut	Moraceae	Tree	Planted (Naturalized)	KNP, Morni hills	-	Ambala, Kurukshetra, Yamuna Nagar
62.	<i>Buchanania lanigan</i> Spreng.	Chiraunji	Anacardiaceae	Tree	Native	KNP	-	
63.	<i>Buddleja asiatica</i> Lour.	Neemda	Scrophulariaceae	Tree	Native	KNP, Morni hills	-	
64.	<i>Butea monosperma</i> (Lam.) Taub.	Palash, Dhaak	Fabaceae	Tree	Native	Common	Common	Common

65.	<i>Caesalpinia pulcherrima</i> (L.) Sw.	Guletera, Gulmohari	Fabaceae	Shrub	Planted	Common	Common	Common
66.	<i>Cajanus scarabaeoides</i> (L.) Thouars	Bankultha	Fabaceae	Climber	Native	Morni hills	-	Ambala, Karnal, Yamuna Nagar
67.	<i>Calliandra haematocephala</i> Hassk.	Bijauri	Fabaceae	Shrub	Planted	Common	Common	Common
68.	<i>Callicarpa macrophylla</i> Vahl.	Daiya	Lamiaceae	Shrub	Native	KNP, Morni hills	-	Ambala
69.	<i>Calotropis gigantea</i> (L.) Dryand.	Aak, Moto-Aak	Apocynaceae	Shrub	Native	Common	Common	Common
70.	<i>Calotropis procera</i> (Aiton) Dryand.	Aak, Akaro	Apocynaceae	Shrub	Native	Common	Common	Common
71.	<i>Campylotropis stenocarpa</i> (Klotzsch) Schindler	Harvstki	Fabaceae	Shrub	Native	KNP, Morni hills	-	-
72.	<i>Canavalia gladiata</i> (Jacq.) DC.	Talwar Sem	Fabaceae	Climber	Planted	KNP	-	-
73.	<i>Capparis decidua</i> (Forssk.) Edgew.	Hins	Capparaceae	Shrub	Native	-	Bhiwani, Faridabad, M. Garh, Mewat, Gurgram, Rewari,	Almost all over the state
74.	<i>Capparis sepiaria</i> L.	Kil, Kanthari	Capparaceae	Shrub	Native	-	-	Almost all over the state
75.	<i>Capparis zeylanica</i> L.	Hins	Capparaceae	Climbing Shrub	Native	KNP, Morni-Pinjore,	Bhiwani, Faridabad, Gurgram, M. Garh, Mewat,	Almost all over the state
76.	<i>Cardiospermum halicacabum</i> L.	Kanphuti, Kakadni, Kapal Phori	Sapindaceae	Climber	Native	Common	Common	Common
77.	<i>Careya arborea</i> Roxb.	Kumbhi	Lecythidaceae	Tree	Native	KNP	-	-
78.	<i>Carissa spinarum</i> L.	Jangali Karaunda	Apocynaceae	Shrub	Native	Common	Common	Common
79.	<i>Carissa carandas</i> L.	Karaunda	Apocynaceae	Shrub	Planted	-	-	Hisar, Jind, Karnal, Kurukshetra, Panipat, Rohtak,

								Sonepat, Yamuna Nagar, Gurugram
80.	<i>Caroxylon imbricatum</i> var. <i>imbricatum</i> [syn. <i>Salsola baryosma</i> (Roem. & Schult.) Dandy]	Lani	Amaranthaceae	Shrub	Native	-	Rewari, Mewat	Hissar, Jhajjar
81.	<i>Carthamus tinctorius</i> L.	Kusum	Asteraceae	Shrub	Planted	-	-	Yamuna Nagar
82.	<i>Caryota urens</i> L.	Mari, Fishtail Palm	Arecaceae	Tree	Planted	Common	Common	Common
83.	<i>Cascabela thevetia</i> (L.) Lippold [syn. <i>Thevetia nerifolia</i> (J.) & Stead]	Pilikaner	Apocynaceae	Small Tree	Planted	Common	Common	Common
84.	<i>Casearia graveolens</i> Dalzell	Chilla	Salicaceae	Tree	Native	Morni- Pinjore	-	Ambala, Kurukshetra, Yamuna Nagar
85.	<i>Casearia tomentosa</i> Roxb.	Chilla	Salicaceae	Tree	Native	KNP, Morni- Pinjore	-	Ambala, Yamuna Nagar
86.	<i>Cassia fistula</i> L.	Amaltash	Fabaceae	Tree	Native	Common	Common	Common
87.	<i>Cassia javanica</i> subsp. <i>nodososa</i> (Buch.-Ham. ex Roxb.)	Java Cassia	Fabaceae	Tree	Planted	-	Gurugram, Bhiwani,	Yamuna Nagar
88.	<i>Cassine albens</i> (Retz.) Kosterm.	-	Celastraceae	Tree	Native	Morni hills	-	-
89.	<i>Cassine glauca</i> (Rottb.) Kuntze	Jamrasi	Celastraceae	Tree	Native	KNP, Morni hills	-	-
90.	<i>Casuarina equisetifolia</i> L.	Jangali Saru	Casuarinaceae	Tree	Planted	Common	Common	Common
91.	<i>Catamixis baccharoides</i> Thomson	Catamisix	Asteraceae	Shrub	Native	KNP	-	-
92.	<i>Catunaregam spinosa</i> (Thunb.) Tirveng.	Kari	Rubiaceae	Tree	Native	KNP, Morni- Pinjore	-	Ambala, Kurukshetra, Rohtak, Sonipat, Yamuna Nagar

93.	<i>Cayratia trifolia</i> (L.) Domin	Amabail	Vitaceae	Climber	Native	Common	Common	Common
94.	<i>Cebatha pendula</i> (J.R.Forst. & G.Forst.) Kuntze (Syn. <i>Cocculus pendulus</i> (J.R.Forst. & G.Forst.) Diels)	Poh	Menispermaceae	Climber	Native		Rewari, Mewat, Gurugram, Bhiwani, M.Garh	Jind, Sonipat, Rohatik
95.	<i>Ceiba speciosa</i> (A. St.-Hil.) Ravenna	Reshamrui	Bombacaceae	Tree	Planted	Common	Common	Common
96.	<i>Celastrus paniculata</i> Willd.	Malkangani	Celastraceae	Climber	Native	KNP, Morni-Pinjore	-	-
97.	<i>Celosia argentea</i> L.	Sarvali	Amaranthaceae	Shrub	Native	Morni hills	-	Ambala
98.	<i>Celtis tetrandra</i> Roxb.	Khadik	Ulmaceae	Tree	Native	KNP, Morni-Pinjore,	-	Ambala, Yamuna Nagar
99.	<i>Cestrum parqui</i> (Lam.) L'Hér.	Raat Ki Rani	Solanaceae	Shrub	Planted	Common	Common	Common
100.	<i>Cestrum nocturnum</i> L.	Raat Ki Rani	Solanaceae	Shrub	Planted	Common	Common	Common
101.	<i>Chukrasia tabularis</i> A.Juss.	Chukrasia	Meliaceae	Tree	Planted	Common	Common	Common
102.	<i>Cissampelos pareira</i> L.	Jaljamani	Menispermaceae	Climber	Native	KNP, Morni hills	-	Ambala, Yamuna Nagar, Kurushetra, Kaithal
103.	<i>Cissus quadrangularis</i> L.	Hadjod	Vitaceae	Climber	Planted	Morni-Pinjor	-	Yamuna Nagar
104.	<i>Cissus repanda</i> Vahl		Vitaceae	Climber	Native	KNP, Morni hills	-	-
105.	<i>Citrullus colocynthis</i> (L.) Schrad.	Indarayan	Cucurbitaceae	Climber	Native	KNP	-	-
106.	<i>Citrus aurantiifolia</i> (Christ m.) Swingle	Kagji Nimbu	Rutaceae	Tree	Planted	Common	Common	Common
107.	<i>Citrus aurantium</i> L.	Khatta santara	Rutaceae	Tree	Planted	Common	Common	Common
108.	<i>Citrus limon</i> (L.) Osbeck.	Galgal	Rutaceae	Shrub	Planted	Common	Common	Common

109.	<i>Citrus maxima</i> (Burm.) Merr.	Chakotara	Rutaceae	Tree	Planted	Common	Common	Common
110.	<i>Citrus medica</i> L.	Bada Nimbu	Rutaceae	Tree	Planted	Common	Common	Common
111.	<i>Clematis buchananiana</i> DC.	Alka Loga	Ranunculaceae	Climber	Native	Morni hills	-	-
112.	<i>Clematis gouriana</i> Roxb. ex DC.	Churanhaar	Ranunculaceae	Climber	Native	KNP, Morni hills	-	-
113.	<i>Clematis roylei</i> Rehder	Nakchikani	Ranunculaceae	Climber	Native	Morni hills	-	-
114.	<i>Cleome viscosa</i> L.	Hulhul	Cleomaceae	Shrub	Native	Morni hills	-	Ambala, Kurushetra, Kaithal,
115.	<i>Clerodendrum chinense</i> (Osb eck) Mabb.	Chinese Glory	Lamiaceae	Shrub	Native	Morni - Pinjor	Gurugram, Rohtak	Ambala, Kurushetra
116.	<i>Clerodendrum indicum</i> (L.) Kuntze	Barang	Lamiaceae	Shrub	Native	Morni hills	-	-
117.	<i>Clerodendrum infortunatum</i> L. (syn. <i>Clerodendrum viscosum</i> Vent.)	BHaat	Lamiaceae	Shrub	Native	KNP, Morni hills	-	Ambala, Kurushetra, Kaithal
118.	<i>Clerodendrum phlomidis</i> L.f.	Arana	Lamiaceae	Shrub	Native	-	Rewari, Mewat, Gurugram, Bhiwani, M.Garh	Rohtak, Jind, Jhajjar, Sonipat, Panipat
119.	<i>Clitoria ternatea</i> L.	Aprajita, Koyalali	Fabaceae	Climber	Planted (Naturalized)	Common	Common	Common
120.	<i>Coccinia grandis</i> (L.) Voigt	Hangali Kudaru	Cucurbitaceae	Climber	Native	Common	Common	Common
121.	<i>Cocculus hirsutus</i> (L.) W.Theob.	Phareed Booti	Menispermaceae	Climber	Native	Common	Common	Common
122.	<i>Codariocalyx motorius</i> (Houtt.) H.Ohashi [syn. <i>Desmodium gyrans</i> (L.f.) DC]	Dudali	Fabaceae	Shrub	Native	Morni hills	-	Ambala, Yamuna Nagar
123.	<i>Colebrookea oppositifolia</i> Sm.	Binda, Pasara	Lamiaceae	Shrub	Native	KNP, Morni hills	-	Ambala, Yamuna Nagar

124.	<i>Combretum indicum</i> (L.) DeFilipps	Madhumalti	Combretaceae	Climber	Native	Common	Common	Common
125.	<i>Commiphora wightii</i> (Arn.) Bhandari	Guggal	Burseraceae	Shrub	Native	-	M.Garg, Rewari, Bhiwani, Mewat	-
126.	<i>Conocarpus lancifolius</i> Engl.	Buttan wood	Combretaceae	Shrub	Planted	-	Gurugram	-
127.	<i>Corchorus aestuans</i> L.	Choch, Hade ka khet, Kaga-roti	Malvaceae	Shrub	Native	Common	Common	Common
128.	<i>Corchorus capsularis</i> L.	Harrana	Malvaceae	Shrub	Native		Mewat, Rewari	
129.	<i>Cordia dichotoma</i> G.Forst.	Lasoda	Boraginaceae	Tree	Native	Common	Common	Common
130.	<i>Cordia sinensis</i> Lam.	Gundi	Boraginaceae	Tree	Native		M.Garg, Rewari, Bhiwani, Mewat	-
131.	<i>Cordia vestita</i> Hook.f. & Thom.	Kum	Boraginaceae	Tree	Native	KNP	-	-
132.	<i>Cordia macleodii</i> Hook.f. & Thomson	Badalsoda	Boraginaceae	Tree	Native	KNP	-	-
133.	<i>Corymbia citriodora</i> (Hook) K.D.Hill & L.A.S.Johnson (syn. <i>Encalyptus citriodora</i> Hook.)	Safeda	Myrtaceae	Tree	Planted	Common	Common	Common
134.	<i>Cratera magna</i> (Lour.) DC. (<i>Cratera nurvala</i> Buch.-Ham.)	Baruna	Capparaceae	Tree	Native	Morni – Pinjor	-	Ambala
135.	<i>Cratera adansonii</i> DC.	Barun, Barni, Barna	Capparaceae	Tree	Native	KNP, Morni – Pinjor	-	Ambala, Kurukshetra
136.	<i>Crotalaria burhia</i> Buch.-Ham.	Shanio, Sanni, Kharsana	Fabaceae	Shrub	Native	-	Rewari, M.Garh, Gurugram	Hisar
137.	<i>Crotalaria medicaginea</i> Lam.	Ashudhisha ag	Fabaceae	Shrub	Native	-	Rewari, M.Garh, Gurugram	-
138.	<i>Crotalaria sericea</i> Burm.f.	Jhunjhuniya	Fabaceae	Shrub	Native	Morni hills	-	-
139.	<i>Crotalaria spectabilis</i> Roth	Ghungari	Fabaceae	Shrub	Native	KNP	-	-

140.	<i>Croton bonplandianus</i> Ball.	Jamalgota	Euphorbiaceae	Shrub	Native	Common	Common	Common
141.	<i>Cryptolepis buchananii</i> R.Br. ex Roem. & Schult. [syn. <i>Cryptolepis dubia</i> (Burm.f.) M.R.Almeida]	Dudhi	Apocynaceae	Climber	Native	KNP, Morni –Pinjor	-	-
142.	<i>Cucumis maderaspatanus</i> L.	Agnaki, Agumaki	Cucurbitaceae	Climber	Native	KNP	-	-
143.	<i>Dalbergia sissoo</i> DC.	Shisham	Fabaceae	Tree	Native	Common	Common	Common
144.	<i>Dalbergia lanceolaria</i> L.f.	Takauli	Fabaceae	Tree	Native	Morni hills	-	Ambala
145.	<i>Datura stramonium</i> L.	Safed dathura	Solanaceae	Shrub	Native	Common	Common	Common
146.	<i>Debregeasia saeneb</i> (Forssk.) Hepper & J.R.I.Wood	Sandoori,	Urticaceae	Shrub	Native	Morni hills	-	-
147.	<i>Delonix regia</i> (Hook.) Raf.	Gulmohar	Fabaceae	Tree	Planted	Common	Common	Common
148.	<i>Dendrocalamus hamiltonii</i> Nees & Arn. Ex Munro	Tama	Poaceae	Shrub	Planted	-	-	Kaithal (Sarswati WS)
149.	<i>Dendrocalamus strictus</i> (Roxb.) Nees	Lathi baans	Poaceae	Shrub	Native	Common	Common	Common
150.	<i>Dendrophthoe falcata</i> (L.f.) Ettings (syn. <i>Loranthus falcatus</i> L.f.)	Banda	Loranthaceae	Shrub	Native	Common	Common	Common
151.	<i>Dichrostachys cinerea</i> (L.) Wight & Arn.	Sami	Fabaceae	Tree	Native	Common	Common	Common
152.	<i>Dicoma tomentosa</i> Cass.	Vajardanti, Ubio til-kant	Asteraceae	Shrub	Native	-	Rewari, Mewat	-
153.	<i>Dillenia indica</i> L.	Chalta	Dilleniaceae	Tree	Planted	Morni-Pinjore	Gurugram	-
154.	<i>Dioscorea belophylla</i> (Prain) Voigt ex Haines	Ratalu	Dioscoreaceae	Climber	Native	Morni-Pinjore,	-	Yamuna Nagar, Ambala,

						KNP		Kurukshetra
155.	<i>Dioscorea bulbifera</i> L.	Ratalu	Dioscoreaceae	Climber	Native	Morni-Pinjore, KNP	-	Ambala, Karnal, Kaithal, Yamuna Nagar
156.	<i>Dioscorea pentaphylla</i> L.	Pach Patia Alu	Dioscoreaceae	Climber	Native	KNP	-	
157.	<i>Diospyros malabarica</i> (Desr.) Kostel	Guab	Ebenaceae	Tree	Native	Morni-Pinjore,	-	-
158.	<i>Diospyros melanoxylon</i> Roxb.	Tendu	Ebenaceae	Tree	Native	KNP	-	-
159.	<i>Diospyros montana</i> Roxb.	Vishtendu	Ebenaceae	Tree	Native	KNP, Morni-Pinjore	-	Ambala
160.	<i>Diplocyclos palmatus</i> (L.) C.Jeffrey	Shivlangi	Cucurbitaceae	Climber	Native	Common	Common	Common
161.	<i>Distimake aegyptius</i> (L.) A.R.Simões & Staples [<i>Merremia aegyptia</i> (L.) Urb.]	Khunti	Convolvulaceae	Climber	Invasive	Morni	-	Ambala, Yamuna Nagar
162.	<i>Dodonaea viscosa</i> (L.) Jacq.	Vilayati , Aliyar	Sapindaceae	Shrub	Planted (Naturalized)	Morni-Pinjore	M.Garg, Gurugaon, Rewari, Bhiwani	
163.	<i>Dombeya burgessiae</i> Gerrard ex Harv. & Sond.	Dobein	Malvaceae	Shrub	Planted	Common	Common	Common
164.	<i>Dubaldea cappa</i> (Buch.-Ham. ex D. Don) Pruski & Anderb.	Gathihar	Asteraceae	Shrub	Native	KNP, Morni-Pinjore	-	Yamuna Nagar, Ambala
165.	<i>Duranta erecta</i> L.	Duranta	Verbenaceae	Shrub	Planted	Common	Common	Common
166.	<i>Ebretia laevis</i> Roxb.	Chmror, Desi papadi	Boraginaceae	Tree	Native	KNP, Morni-Pinjore	-	Yamuna Nagar, Ambala, Kaithal
167.	<i>Ebretia acuminata</i> R.Br.	Punyan, Puna	Boraginaceae	Tree	Native	Morni Hills	-	-
168.	<i>Engelhardtia spicata</i> Lechen ex Blume	Gadhmau, Mahava, Samm	Juglandaceae	Tree	Native	Morni Hills	-	-

169.	<i>Ephedra ciliata</i> Fisch. & C.A.Mey. (syn. <i>Ephedra foliata</i> Boiss. ex C.A.Mey.)	Ootphog	Ephedraceae	Climber	Native	-	M.Garh, Bhiwani, Rewari	-
170.	<i>Eranthemum pulchellum</i> Andrews	Gulshaam	Acanthaceae	Shrub	Native	KNP, Morni hills	-	-
171.	<i>Eriobotrya japonica</i> (Thunb.) Lindl.	Lokat	Rosaceae	Tree	Planted	Common	Common	Common
172.	<i>Erythrina suberosa</i> Roxb.	Dhauladhak	Fabaceae	Tree	Native	KNP, Morni Hills	-	Ambala
173.	<i>Erythrina variegata</i> L.	Pangara	Fabaceae	Tree	Planted	Common	Common	Common
174.	<i>Eucalyptus tereticornis</i> Sm.	Safreda, Eucalyptus	Myrtaceae	Tree	Planted	Common	Common	Common
175.	<i>Eucalyptus camaldulensis</i> D ehn.	Safeda	Myrtaceae	Tree	Planted	Common	Common	Common
176.	<i>Eucalyptus paniculata</i> Sm.	Bhura Eucalyptus	Myrtaceae	Tree	Planted	Common	Common	Common
177.	<i>Euphorbia caducifolia</i> Haines.	Thor, Danda Thor	Euphorbiaceae	Shrub	Native	-	Rewari, Gurugram	-
178.	<i>Euphorbia neriifolia</i> L.	Thuhar	Euphorbiaceae	Shrub	Native	-		
179.	<i>Euphorbia pulcherrima</i> Willd. ex Klotzsch	Llapati	Euphorbiaceae	Shrub	Planted	Common	Common	Common
180.	<i>Euphorbia royleana</i> Boissier in DC.	Thok, Surai	Euphorbiaceae	Shrub	Native	KNP, Morni hills	-	-
181.	<i>Falconeria insignis</i> Royle [<i>Sapium insigne</i> (Royle) Benth. ex Trimen]	Khinna, Kharun	Euphorbiaceae	Tree	Native	Morni Hills	-	-
182.	<i>Fernandoa adenophylla</i> (Wall. ex G. Don) Steenis [syn. <i>Haplophragma adenophyllum</i> (Wall. ex G. Don) Dop]	Marodphali	Bignoniaceae	Tree	Planted	KNP, Morni Hills	Gurugram	Ambala, Yamuna Nagar, Kaithal
183.	<i>Ficus auriculata</i> Lour.	Timla	Moraceae	Tree	Native	KNP, Morni Hills	-	Ambala, Yamuna Nagar

184.	<i>Ficus benghalensis</i> L.	Bargad, Badh, Barlo, Bar.	Moraceae	Tree	Native	Common	Common	Common
185.	<i>Ficus benjamina</i> L.	Pukar	Moraceae	Tree	Planted (Naturalized)	Common	Common	Common
186.	<i>Ficus elastica</i> Roxb. ex Hornem.	Rubber Plant	Moraceae	Tree	Planted (Naturalized)	Common	Common	Common
187.	<i>Ficus hispida</i> L.f.	Daduri	Moraceae	Tree	Native	Common	Common	Common
188.	<i>Ficus mollis</i> Vahl	Ban Peepal	Moraceae	Tree	Native	-	Common	Common
189.	<i>Ficus palmata</i> Forssk. subsp. <i>virgata</i> (Roxb.) Browicz	Jangali Anjeer	Moraceae	Tree	Native	Common	Common	Common
190.	<i>Ficus racemosa</i> L.	Goolar	Moraceae	Tree	Native	Common	Common	Common
191.	<i>Ficus religiosa</i> L.	Peepal	Moraceae	Tree	Native	Common	Common	Common
192.	<i>Ficus semicordata</i> Buch.- Ham. ex Smith	Bhuigoola, Jhar phalli	Moraceae	Tree	Native	KNP, Morni Hills	-	-
193.	<i>Ficus virens</i> Aiton	Pilkhana, Pilkan	Moraceae	Tree	Native	Common	Common (planted)	Common
194.	<i>Ficus rumphii</i> Blume	Pilkhi, Gajan	Moraceae	Tree	Native	Common	-	Ambala, Yamuna Nagar
195.	<i>Flacourtia indica</i> (Burm.f.) Merr.	Kandai, Paniyala	Salicaceae	Tree	Native	KNP, Morni Hills	-	Ambala, Yamuna Nagar
196.	<i>Flacourtia jangomas</i> (Lour.) Raeusch.	Kangati, Paniyala	Salicaceae	Tree	Native	KNP, Morni Hills	-	Ambala, Yamuna Nagar
197.	<i>Flemingia bracteata</i> (Roxb.) Wight	Kanphuta	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-
198.	<i>Flemingia macrophylla</i> (Willd.) Prain ex Merrill	Badasolpan	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-
199.	<i>Flemingia strobilifera</i> (L.) W.T.Aiton	Kanphula	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-

200	<i>Flueggea leucopyrus</i> Willd.	Patala, Ghat-bor	Phyllanthaceae	Shrub	Native	-	Bhiwani, Fatehabad, Gurgaon, M. Garh, Mewat, Rewari,	Rohtak, Sonipat, Palwal,
201	<i>Gardenia jasminoides</i> J. Ellis	Gulchand, Gandhraj	Rubiaceae	Shrub	Planted (Naturalized)	Common	Common	Common
202	<i>Garuga pinnata</i> Roxb.	Kharpat	Burseraceae	Tree	Native	KNP	-	-
203	<i>Glochidion heyneanum</i> (Wight & Arn.) Wight	Kalikanth	Phyllanthaceae	Tree	Native	KNP, Morni Hills	-	-
204	<i>Gloriosa superba</i> L.	Kalhari	Colchicaceae	Climber	Native	KNP, Morni Hills	-	Ambala, Kaithal
205	<i>Glycyrrhiza glabra</i> L.	Mulathi	Fabaceae	Shrub	Planted	-	Bhiwani	Yamuna Nagar, Hissar, Karnal, Kaithal
206	<i>Gmelina arborea</i> Roxb.	Gamhar	Lamiaceae	Tree	Planted	Common	Common	Common
207	<i>Gossypium arboreum</i> L.	Kapas	Malvaceae	Shrub	Planted	Common	Common	Common
208	<i>Grevillea robusta</i> A.Cunn. ex R.Br.	Silver Oak	Proteaceae	Tree	Planted	Common	Common	Common
209	<i>Grewia abutilifolia</i> Vent. Ex. Juss.	Gangeti	Malvaceae	Shrub	Native	-	Rewari, Mewat	-
210	<i>Grewia asiatica</i> L.	Phalsa	Malvaceae	Tree	Native	Morni Hills	-	Ambala, Kurushetra, Yamuna Nagar
211	<i>Grewia optiva</i> J.R.Drumm. ex Burret	Bheemal, Bahal	Malvaceae	Tree	Native	KNP, Morni Hills	-	-
212	<i>Grewia tenax</i> (Forssk.) Fiori	Godani, Gundhni, Gangarun	Malvaceae	Shrub	Native	-	Mewat, M. Garh, Bhiwani, Gurugram, Rewari	-
213	<i>Grewia villosa</i> Wild.	Falsa	Malvaceae	Shrub	Native	-	M.Garh	-
214	<i>Grewia flavaescens</i> Juss.	Panchnota, Godani	Malvaceae	Tree	Native	KNP	Mewat, M. Garh, Bhiwani, Gurugram, Rewari	-

215.	<i>Grewia hirsuta</i> Vahl.	Kakarandah, Cucarbeech Pahorangli	Malvaceae	Shrub	Native	KNP, Morni Hills	-	-
216.	<i>Grewia serrulata</i> DC.	Bhansuli	Malvaceae	Shrub	Native	KNP, Morni Hills	-	-
217.	<i>Grewia tiliifolia</i> Vahl	Phalsa	Malvaceae	Tree	Native	KNP, Morni Hills	-	-
218.	<i>Guilandina bonduc</i> L. (syn. <i>Caesalpinia bonduc</i> (L.) Roxb.)	Kateli	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-
219.	<i>Gymnosporia emarginata</i> (Willd.) Thwaites [<i>Maytenus emarginata</i> (Willd.) Ding Hou]	Talkar, Kakera	Celastraceae	Shrub	Native	Morni Hills	Mewat, M. Garh, Bhiwani, Gurugram, Rewari	-
220.	<i>Hamelia patens</i> Jacq.	Firebush	Rubiaceae	Tree	Planted	Common	Common	Common
221.	<i>Helicteres isora</i> L.	Marodphali	Malvaceae	Shrub	Native	KNP, Morni Hills	Faridabad, Gurgaon, Morni- Pinjore	Ambala, Yamuna Nagar, Kurukshetra,
222.	<i>Helinus lanceolatus</i> Brandis	Murain	Rhamnaceae	Shrub	Native	KNP, Morni Hills	-	Yamuna Nagar
223.	<i>Hemidesmus indicus</i> (L.) R. Br. ex Schult.	Anantmool	Apocynaceae	Climber	Native	KNP	-	-
224.	<i>Hibiscus rosa-sinensis</i> L.	Gudhal	Malvaceae	Shrub	Planted	Common	Common	Common
225.	<i>Hibiscus sabdariffa</i> L.	Lalsan	Malvaceae	Shrub	Planted	Common	Common	Common
226.	<i>Hibiscus micranthus</i> L.f.	Okada	Malvaceae	Shrub	Planted	Morni hills		Kaithal
227.	<i>Hibiscus syriacus</i> L.	Gurhal	Malvaceae	Shrub	Planted	Common	Common	Common
228.	<i>Hiptage benghalensis</i> (L.) Kurz	Madharilata	Malpighiaceae	Climber	Native	Morni	-	-
229.	<i>Holarrhena pubescens</i> (Buch.-Ham.) Wall. Ex G. Don (syn. <i>Holarrhena antidysenterica</i>	Doodhi, Kurchi	Apocynaceae	Tree	Native	KNP, Morni Hills	-	Yamuna Nagar, Ambala

	Wall.)							
230.	<i>Holoptelea integrifolia</i> Planch.	Kanju, Papri, Chilibil	Ulmaceae	Tree	Native	Common	Common	Common
231.	<i>Hymenodictyon orixense</i> (Roxb.) Mabberley [<i>Hymenodictyon excelsum</i> (Roxb.) Wall.]	Badaru, Borang, Bhoolan	Rubiaceae	Tree	Native	KNP	-	Ambala
232.	<i>Ichnocarpus frutescens</i> (L.) W.T. Alton	Kalidudhi	Apocynaceae	Climber	Native	KNP, Morni-Pinjore	-	Karnal, Kurukshetra, Panipat
233.	<i>Indigofera atropurpurea</i> Buch.-Ham. ex Hornem	Saakhinu	Fabaceae	Shrub	Native	Morni Hills	-	-
234.	<i>Indigofera cassioides</i> DC.	Neel Kathi	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-
235.	<i>Indigofera oblongifolia</i> Forsk.	Goilia or Jhil.	Fabaceae	Shrub	Native	-	Mewat, Rewari	-
236.	<i>Indigofera astragalina</i> DC.	Dagadiya	Fabaceae	Shrub	Native	Morni-Pinjore	-	Ambala, Hisar, Jhajjar, Jind, Karnal, Kurukshetra, Panipat, Rohtak, Yamuna Nagar
237.	<i>Indigofera heterantha</i> Brandis	Shakina	Fabaceae	Shrub	Native	KNP, Morni Hills	-	-
238.	<i>Ipomea muricata</i> (L.) Jacq.	Barik Bhovari	Convolvulaceae	Climber	Invasive	-	-	Ambala, Yamuna Nagar
239.	<i>Ipomea pes-tigridis</i> L.	Panchpatia	Convolvulaceae	Climber	Invasive	KNP		Ambala
240.	<i>Ipomoea cairica</i> (L.) Sweet	Neelibel	Convolvulaceae	Climber	Planted (Naturalized)	Common	Common	Common
241.	<i>Ipomoea carnea</i> subsp. <i>fistulosa</i> (Mart. ex Choisy) D.F. Austin	Besharma	Convolvulaceae	Shrub	Invasive	Common	Common	Common
242.	<i>Ipomoea hederifolia</i> L.	Lal pungli	Convolvulaceae	Climber	Invasive	Morni Hills		Ambala
243.	<i>Ipomoea nil</i> (L.) Roth, C	Neelkalmi	Convolvulaceae	Climber	Invasive	KNP	-	-
244.	<i>Ipomoea triloba</i> L.	Little Bell Morning	Convolvulaceae	Climber	Invasive	Morni Hills		Yamuna Nagar, Kurushetra

		Glory						
245.	<i>Ixora coccinea</i> L.	Ixora, Kota Gandhal	Rubiaceae	Shrub	Planted	Common	Common	Common
246.	<i>Jacaranda mimosifolia</i> D. Don	Neeli Gulmohar	Bignoniaceae	Tree	Planted	Common	Common	Common
247.	<i>Jasminum arborescens</i> Roxb.	Chameli	Oleaceae	Shrub	Native	Morni Hills	-	Ambala, Yamuna Nagar, Sonipat
248.	<i>Jasminum multiflorum</i> (Burm.f.) Andrews, Bot.	Chameli	Oleaceae	Shrub	Native	KNP	-	-
249.	<i>Jasminum sambac</i> (L.) Aiton	Motiya, Mogara	Oleaceae	Shrub	Planted	Common	Common	Common
250.	<i>Jasminum grandiflorum</i> L.	Chameli	Oleaceae	Climber	Native	Morni Hills	-	-
251.	<i>Jasminum humile</i> L.	Peeli Chameli	Oleaceae	Shrub	Planted	Common	Common	Common
252.	<i>Jatropha curcas</i> L.	Jangali Arand	Euphorbiaceae	Shrub	Planted	Common	Common	Common
253.	<i>Jatropha gossypifolia</i> L.	Mayala, Ratanjyoti	Euphorbiaceae	Shrub	Native	KNP, Morni Hills	-	Ambala, Yamuna Nagar
254.	<i>Justicia adhatoda</i> L. [<i>Adhatoda adhatoda</i> (L.) Huth]	Basuti, Bansa	Acanthaceae	Shrub	Native	KNP, Morni hills	Common	Common
255.	<i>Kigelia africana</i> (Lam.) Benth.	Balamkheera	Bignoniaceae	Tree	Planted	Common	Common	Common
256.	<i>Kydia calycina</i> Roxb.	Pathha, Pula	Malvaceae	Tree	Native	KNP, Morni Hills	-	-
257.	<i>Lagerstroemia indica</i> L.	Sawani	Lythraceae	Tree	Planted	Common	Common	Common
258.	<i>Lagerstroemia parviflora</i> Roxb.	Sidhh	Lythraceae	Tree	Native	KNP, Morni Hills	-	-
259.	<i>Lagerstroemia speciosa</i> (L.) Pers.	Jarul	Lythraceae	Tree	Planted	Common	Common	Common
260.	<i>Lannea coromandelica</i> (Houtt.) Merr.	Jhingan	Anacardiaceae	Tree	Native	KNP, Morni Hills	-	-
261.	<i>Lantana camara</i> L.	Phooll Lakadi, Lantana	Verbenaceae	Shrub	Invasive	Common	Common	Common

262.	<i>Lawsonia inermis</i> L.	Mehandi	Lythraceae	Shrub	Planted	Common	Common	Common
263.	<i>Leea asiatica</i> (L.) Ridsdale	Banchalita	Vitaceae	Shrub	Native	Morni Hills	-	-
264.	<i>Leptadenia pyrotechnica</i> (Forssk.) Decne	Kheep, Khip	Apocynaceae	Climber	Native		Faridabad, M. Garh, Mewat, Gurgram, Rewari,	Bhiwani, Fatehabad, Hisar, Jhajjar, Jind, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa
265.	<i>Leptadenia reticulata</i> (Retz.) Wight	Jhumaka	Apocynaceae	Climber	Native	-	M. Garh, Mewat, Rewari	-
266.	<i>Leptopus cordifolius</i> Decne.	Bharto	Phyllanthaceae	Shrub	Native	Morni Hills, KNP	-	Ambala
267.	<i>Lespedeza juncea</i> var. <i>sericea</i> (Thunb.) Lace & Hauech	Tipatiya	Fabaceae	Shrub	Native	Morni Hills	-	-
268.	<i>Leucaena leucocephala</i> (Lam.) de Wit	Safed Babool, Subabool, Vilayati Siris	Fabaceae	Tree	Planted	Common	Common	Common
269.	<i>Leucomeris spectabilis</i> D. Do n	Phusyari	Asteraceae	Tree	Native	KNP	-	-
270.	<i>Lippia alba</i> (Mill.) N.E.Br. ex Britton & P. Wilson	Ghneri	Verbenaceae	Shrub	Native	Morni Hills	M.Garh, Rewari	-
271.	<i>Litchi chinensis</i> Sonn.	Litchi	Sapindaceae	Tree	Planted	Common	Common	Common
272.	<i>Litsea glutinosa</i> (Lour.) C.B.Rob.	Maida	Lauraceae	Tree	Native	KNP	-	-
273.	<i>Livistona chinensis</i> (Jacq.) R.Br. ex Mart.	China Palm	Arecaceae	Tree	Planted	Common	Common	Common
274.	<i>Lycium barbarum</i> L.	Garothi	Solanaceae	Shrub	Native	-	-	Mewat, Rewari, Bhiwani
275.	<i>Madhuca longifolia</i> J.F. Macbr. var. <i>latifolia</i> (Roxb.) A. Chev	Mahua	Sapotaceae	Tree	Native	KNP	-	Ambala
276.	<i>Maerua oblongifolia</i> (Forssk.) A.Rich.	Pilwani, Hemkand	Capparaceae	Climber	Native	-	Rewari, Gurgaon, M. Garh, Mewat	Bhiwani, Faridabad, Palwal, Panipat, Rohtak Karnal,

277	<i>Magnolia champaca</i> (L.) Baill. ex Pierre	Champa	Magnoliaceae	Tree	Planted	Common	Common	Common
278	<i>Mallotus nudiflorus</i> (L.) Kulju & Welzen (syn. <i>Trewia nudiflora</i> L.)	Gutel	Euphorbiaceae	Tree	Native	-	-	Ambala, Kurukshetra
279	<i>Mallotus philippensis</i> (Lam.) Müll.Arg.	Rohani	Euphorbiaceae	Tree	Native	Morni-Pinjore, KNP	-	Ambala, Gurgaon, Kurukshetra, Yamuna Nagar
280	<i>Malvastrum coromandelianum</i> (L.) Garcke	Vangulav	Malvaceae	Shrub	Native	KNP	-	Ambala, Kurukshetra, Yamuna Nagar
281	<i>Mangifera indica</i> L.	Aam	Anacardiaceae	Tree	Native	Common	Common	Common
282	<i>Manilkara zapota</i> (L.) P.Royen	Chiku	Sapotaceae	Tree	Planted	Morni-Pinjor	Gurugram, Faridabad	Ambala, Yamuna Nagar
283	<i>Manilkara hexandra</i> (Roxb.) Dubard	Khirani	Sapotaceae	Tree	Planted	Morni-Pinjor	Gurugram	
284	<i>Maoutia puya</i> (Hook.) Wedd.	Sehra	Urticaceae	Shrub	Native	KNP, Morni Hills	-	Ambala
285	<i>Marsdenia roylei</i> Wight	Murawa	Apocynaceae	Climber	Native	Morni Hills	-	-
286	<i>Martynia annua</i> L.	Bichhu, Hathjodi	Martyniaceae	Shrub	Native	KNP, Morni Hills		Ambala, Kurukshetra, Yamuna Nagar, Kaithal
287	<i>Melaleuca virinalis</i> (Sol. ex Gaertn.) Byrnes [syn. <i>Callistemon virinalis</i> (Sol. ex Gaertn.) G.Don]	Botalbrush	Myrtaceae	Tree	Planted	Common	Common	Common
288	<i>Melia azedarach</i> L.	Bakain, Dhrek	Meliaceae	Tree	Native	Common	Common	Common
289	<i>Melochia corchorifolia</i> L.	Bil Pat	Malvaceae	Shrub	Native	KNP, Morni Hills		Ambala, Yamuna Nagar, Jind, Sonipat, Kaithal
290	<i>Merremia hederacea</i> (Burm.f) Hallier f.	Hemali	Convolvulaceae	Climber	Native	-	-	Ambala, Yamuna Nagar

291	<i>Mesua ferrea</i> L.	Nagkehar	Clusiaceae	Tree	Planted	Morni-Pinjor	Gurugram	-
292	<i>Miliusa velutina</i> (A.DC.) Hook.f. & Thomson	Domsal	Annonaceae	Tree	Native	KNP	-	Ambala
293	<i>Millettia extensa</i> (Benth.) Baker in Hook. f. (syn. <i>Millettia auriculata</i> Baker)	Gaunj, Goj	Fabaceae	Climber	Native	KNP, Morni Hills	-	Ambala, Yamuna Nagar
294	<i>Millettia peguensis</i> Ali.	Tuma	Fabaceae	Tree	Planted	Morni-Pinjor	Gurugram, Faridabad	Ambala
295	<i>Millingtonia hortensis</i> L.f.	Neeli ChameliAk ashneem	Bignoniaceae	Tree	Planted	Morni-Pinjor	Gurugram	Ambala, Kaithal
296	<i>Mimosa rubicaulis</i> Lam. subsp. <i>himalayana</i> (Gamble) H. Ohashi	Aila, Hajeru (Macadam)	Fabaceae	Shrub	Native	KNP, Morni Hills	Rewari, Mewat	Ambala
297	<i>Mimosa pudica</i> L.	Chui-mui	Fabaceae	Shrub	Invasive	Common	Common	Common
298	<i>Mimusops elengi</i> L.	Maulshree	Sapotaceae	Tree	Planted	Morni-Pinjor	Gurugram, Rewari, Bhiwani	Ambala, Kaithal, Sonipat, Rohtak, Jind
299	<i>Mitragyna parvifolia</i> (Roxb.) Korth.	Kaim	Rubiaceae	Tree	Native	Morni-Pinjor	-	-
300	<i>Momordica dioica</i> Roxb. ex Willd.	Bankarela	Cucurbitaceae	Climber	Native	Morni-Pinjor	-	-
301	<i>Morinda pubescens</i> Sm. L.	Aal	Rubiaceae	Shrub	Native	KNP	-	-
302	<i>Morinda citrifolia</i> L.	Bartundi, Noni	Rubiaceae	Tree	Planted	Morni-Pinjor	-	-
303	<i>Moringa oleifera</i> Lam.	Sahjan, Sanjana	Moringaceae	Tree	Planted	Common	Common	Common
304	<i>Morus alba</i> L.	Shatut	Moraceae	Tree	Planted	Common	Common	Common
305	<i>Mucuna pruriens</i> (L.) DC	Kaunch	Fabaceae	Climber	Native	Common	Common	Common
306	<i>Mucuna nigricans</i> (Lour.) Steud.	Badi kaunch	Fabaceae	Climber	Native	Morni hills	-	Ambala
307	<i>Mukia maderaspatana</i> (L.) M. Roem.	Ankh-phod	Cucurbitaceae	Climber	Native	Common	Common	Common

308.	<i>Murraya paniculata</i> (L.) Jack	Kamini	Rutaceae	Shrub	Planted	Common	Common	Common
309.	<i>Myrsine africana</i> L.	Chapra	Myrsinaceae	Shrub	Native	Morni hills	-	-
310.	<i>Naringi crenulata</i> (Roxb.) D.H. Nicolson	Beli	Rutaceae	Shrub	Native	Morni hills, KNP	-	Ambala, Yamuna Nagar
311.	<i>Neolamarckia cadamba</i> (Roxb.) Bosser	Cadamb	Rubiaceae	Tree	Planted	Common	Common	Common
312.	<i>Nerium oleander</i> L.	Lal Kaner	Apocynaceae	Shrub	Native	Common	Common	Common
313.	<i>Nicandra physalodes</i> (L.) Gaertn.	Ranpopati	Solanaceae	Shrub	Native	Morni hills, KNP	Bhiwani, Gurgram	Ambala, Kurukshetra, Panipat, Yamuna Nagar
314.	<i>Nyctanthes arbortristis</i> L.	Harsingar, Parijat	Oleaceae	Tree	Native	Common	Common	Common
315.	<i>Olax nana</i> Wall. ex Benth.	Sudiyo	Olacaceae	Shrub	Native	KNP	-	-
316.	<i>Olea glandulifera</i> Wall. ex G. Don	Ger	Oleaceae	Tree	Native	KNP	-	-
317.	<i>Olea paniculata</i> R.Br.	Indian Olive	Oleaceae	Tree	Native	Morni hills	-	-
318.	<i>Opuntia dillenii</i> (Ker Gawl) Haw.	Nagphani	Cactaceae	Shrub	Native	-	Rewari, M.Garh, Mewat	Jind, Rohtak
319.	<i>Opuntia elatior</i> Mill.	Nagphani	Cactaceae	Shrub	Native	Morni hills	-	-
320.	<i>Oroxylum indicum</i> (L.) Vent.	Pharkat	Bignoniaceae	Tree	Native	Morni hills, KNP	-	Yamuna Nagar
321.	<i>Osyris lanceolata</i> Hochst. & Steud.	Dalim	Santalaceae	Tree	Native	Morni hills	-	-
322.	<i>Ototropis multiflora</i> (DC.) H.Ohashi & K.Ohashi [syn. <i>Desmodium multiflorum</i> DC.]	Multiflower Desmodium	Fabaceae	Shrub	Native	-	Morni	-
323.	<i>Ougeinia oojeinensis</i> (Roxb.) Hochr.	Sandan	Fabaceae	Tree	Native	KNP, Morni-Pinjore	-	Ambala, Yamuna Nagar
324.	<i>Oxystelma esculentum</i> (L. f.) Sm.	Doodhi ki beil	Apocynaceae	Climber	Native	-	-	Jind, Karnal, Kurukshetra,

								Panipat, Rohtak, Sonipat
325.	<i>Pachygone laurifolia</i> (DC.) L.Lian & Wei Wang (Syn. <i>Cocculus laurifolius</i> DC.)	Marpinki	Menispermaceae	Tree	Native	KNP, Morni Hills	-	Ambala
326.	<i>Parkinsonia aculeata</i> L.	Rambabool	Fabaceae	Shrub	Planted	Common	M. Garh, Mewat, Bhiwani, Faridabad, Gurugram, Rewari,	Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Panipat, Rohtak, Sirsa, Palwal
327.	<i>Parthenocissus semicordata</i> (Wall.) Planch.	Chappartan g	Vitaceae	Climber	Native	Morni hills	-	-
328.	<i>Passiflora foetida</i> L.	Jhumuk Lata	Passifloraceae	Climber	Planted	KNP		
329.	<i>Passiflora suberosa</i> L.	Choti Jhumuk Lata	Passifloraceae	Climber	Native	KNP, Morni hills	-	Ambala, Kurukshetra, Yamuna Nagar
330.	<i>Pavetta indica</i> L.	Kath Champa	Rubiaceae	Shrub	Native	Morni hills	-	-
331.	<i>Pergularia daemia</i> (Forssk.) Chiov.	Gadariari Bel, Menda singi, Akadi	Apocynaceae	Climber	Native	-	-	Ambala, Hisar, Jhajjar, Jind, Karnal, Kurukshetra, Panipat, Rohtak
332.	<i>Persicaria chinensis</i> (L.) H. Gross	Paral	Polygonaceae	Shrub	Native	Morni hills	-	-
333.	<i>Phanera retusa</i> Benth.	Kandala, Semla	Fabaceae	Tree	Native	Morni hills	-	-
334.	<i>Phanera vahlii</i> (Wight & Arn.) Benth. (<i>Bauhinia vahlii</i> Wight & Arn.)	Maljan	Fabaceae	Climber	Native	KNP, Morni hills	-	Ambala
335.	<i>Pbroganthus thyrsiformis</i> (Roxb. ex Hardw.) Mabb.	Nogamkak h	Acanthaceae	Shrub	Native	KNP, Morni hills	-	
336.	<i>Phoenix loureiroi</i> Kunth [syn. <i>Phoenix humilis</i> (L.) Cav.]	Khajur	Arecaceae	Tree	Native	KNP, Morni-Pinjor	-	Yamuna Nagar, Ambala, Kurushetra, Kaithal

337.	<i>Phoenix acaulis</i> Roxb.	Khajuri	Arecaceae	Tree	Native	KNP	-	Ambala
338.	<i>Phoenix sylvestris</i> (L.) Roxb.	Khajoor, Khajoorh	Arecaceae	Tree	Native	Morni- Pinjore	Bhiwani, Faridabad, Rewari, M. Garh, Gurgram, Mewat	Ambala, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Sonipat, Yamuna Nagar
339.	<i>Phyllanthus emblica</i> L.	Amala, Anal	Phyllanthaceae	Tree	Native	Common	Common	Common
340.	<i>Phyllanthus reticulatus</i> Poir.	Kale Madhu Ka Ped, Panjuli	Phyllanthaceae	Shrub	Native	Morni- Pinjore	-	Ambala, Karnal, Kurukshetra,
341.	<i>Phyllodium pulchellum</i> (L.) Desv.	Thapi	Fabaceae	Shrub	Native	KNP, Morni hills	-	Ambala, Karnal
342.	<i>Piliostigma malabaricum</i> (Roxb.) Benth. (syn. <i>Bauhinia malabarica</i> Roxb.)	Khatali	Fabaceae	Tree	Native	KNP	-	-
343.	<i>Pinus roxburghii</i> Sarg.	Chir Pine	Pinaceae	Tree	Native	Morni hills	-	-
344.	<i>Pistacia chinensis</i> subsp. <i>integerrima</i> (J.L.Stewart) Rech.f.	Kakdsinghi	Anacardiaceae	Tree	Native	Morni hills	-	-
345.	<i>Pithecellobium dulce</i> (Roxb.) Benth.	Jangal Jalebi	Fabaceae	Tree	Planted	Common	Common	Common
346.	<i>Pleurolobus gangeticus</i> (L.) J.St.-Hil. ex H.Ohashi & K.Ohashi [<i>Desmodium gangeticum</i> (L.) DC.]	Salparni	Fabaceae	Shrub	Native	KNP, Morni hills	-	Ambala, Yamuna Nagar
347.	<i>Plumbago arabica</i> (Boiss.) Christenh. & Byng [<i>Dyerophytum indicum</i> (Gibson ex Wight) Kuntze]	Chit-tral	Plumbaginaceae	Shrub	Native	-	Mewat	-
348.	<i>Plumbago zeylanica</i> Linn.	Chitrak	Plumbaginaceae	Shrub	Native	-	Common (Planted)	Common (Planted)

349	<i>Plumeria rubra</i> L.	Golachin	Apocynaceae	Tree	Planted	Common	Common	Common
350	<i>Pogostemon benghalense</i> (Burm. f.) Kuntze	Jui Lata	Lamiaceae	Shrub	Native	KNP, Morni hills	-	Yamuna Nagar, Ambala
351	<i>Polhillides velutina</i> (Willd.) H.Ohashi & K.Ohashi [<i>Desmodium velutinum</i> (Willd.) DC.]	Motoi	Fabaceae	Shrub	Native	KNP, Morni hills	-	-
352	<i>Polyalthia longifolia</i> (Sonn.) Thwaites	Ashok	Annonaceae	Tree	Planted	Common	Common	Common
353	<i>Pongamia pinnata</i> (L.) Pierre	Karanj, Papri	Fabaceae	Tree	Planted	Common	Common	Common
354	<i>Populus deltoides</i> Marshall	Poplar	Salicaceae	Tree	Planted	Common	Common	Common
355	<i>Poranopsis paniculata</i> (Roxb.) Roberty	Safedbail	Convolvulaceae	Climber	Native	KNP, Morni hills	-	-
356	<i>Pouzolzia rugulosa</i> (Wedd.) Acharya & Kravtsova (syn. <i>Boehmeria rugulosa</i> Wedd.).	Gethi, Gahita	Urticaceae	Tree	Native	Morni hills	-	-
357	<i>Premna barbata</i> Wall. ex Schauer	Bakaar	Lamiaceae	Tree	Native	KNP	-	-
358	<i>Premna latifolia</i> Roxb.	Bakar Basota	Lamiaceae	Tree	Native	KNP, Morni hills	-	-
359	<i>Prosopis juliflora</i> (Swartz) DC.	Maskat, Angreji bevanlio	Fabaceae	Tree	Planted (Naturalized)	Common	Common	Common
360	<i>Prosopis cineraria</i> (L.) Druce	Jhaand	Fabaceae	Tree	Native	-	Rewari, M. Garh, Bhiwani, Faridabad, Mewat, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Ambala	Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Ambala
361	<i>Prunus persica</i> (L.) Stoke	Aadu	Rosaceae	Tree	Planted	Morni-Pinjore	Gurgram, Rewari, M. Garh, Mewat,	Ambala, Fatehabad, Hisar, Jhajjar, Jind,

							Bhiwani, Faridabad,	Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Sonipat, Yamuna Nagar
362.	<i>Prunus domestica</i> subsp. <i>insititia</i> (L.) Bonnier & Layens	Alucha, Alu Bukhara	Rosaceae	Tree	Planted	Morni hills	-	Ambala
363.	<i>Pseudocaryopteris bicolor</i> (Roxb. ex Hardw.) P.D. Cantino	Ban basuti	Acanthaceae	Shrub	Native	Morni hills	-	-
364.	<i>Psidium guajava</i> L.	Amrood	Myrtaceae	Tree	Planted	Common	Common	Common
365.	<i>Psilanthes bengalensis</i> (Roxb. ex Schult.) J.-F.Leroy	Devmal	Rubiaceae	Shrub	Planted	KNP, Morni hills	-	-
366.	<i>Pterospermum acerifolium</i> (L.) Willd.	Kanak Champa	Malvaceae	Tree	Planted	-	-	Sonipat, Yamuna Nagar
367.	<i>Pterygota alata</i> (Roxb.) R.Br.	Tula, Budha Coconut	Malvaceae	Tree	Planted	Morni hills	-	-
368.	<i>Pueraria tuberosa</i> (Roxb. ex Willd.) Dc.	Vidarikand	Fabaceae	Climber	Native	Morni hills	-	-
369.	<i>Punica granatum</i> L.	Annar	Lythraceae	Tree	Planted	Common	Common	Common
370.	<i>Putranjiva roxburghii</i> Wall.	Jay Putra, Putrajeeva	Putranjivaceae	Tree	Native	KNP, Morni hills	-	Ambala, Yamuna Nagar, Karnal
371.	<i>Pyracantha crenulata</i> (Roxb. ex D.Don) M.Roem.	Ghingaru	Rosaceae	Shrub	Native	Morni hills	-	-
372.	<i>Pyrostegia venusta</i> (Ker Gawl.)	Sakrantbael	Bignoniaceae	Climber	Planted	Common	Common	Common
373.	<i>Pyrus pashia</i> Buch. – Ham. ex D. Don	Mehal	Rosaceae	Tree	Native	KNP, Morni hills	Common	Ambala
374.	<i>Quercus leucotrichophora</i> A. Camus	Banj Oak	Fagaceae	Tree	Native	Morni hills	-	-
375.	<i>Randia tetrasprema</i> (Roxb.)	Bhedara	Rubiaceae	Tree	Native	KNP, Morni	-	Ambala

	Benth.,					hills		
376.	<i>Rauvolfia serpentina</i> (L.) Benth. ex Kurz	Sarpgandha	Apocynaceae	Shrub	Native	KNP	-	-
377.	<i>Rhamnus triqueter</i> (Wall.) Lawson	Gaunt	Rhamnaceae	Tree	Native	KNP	-	-
378.	<i>Rhynchosia minima</i> (L.) DC.	Kulthi, Kultah, Kalta, Chiri- motio, Kalta	Fabaceae	Climber	Native	KNP, Morni hills	-	Hisar
379.	<i>Rhynchosia rothii</i> Benth. ex Aitchinson	Roth	Fabaceae	Climber	Native	Morni hills	-	-
380.	<i>Ricinus communis</i> L.	Arandi	Euphorbiaceae	Shrub	Planted, Naturalized	Common	Common	Common
381.	<i>Rivea ornata</i> (Roxb.) Choisy	-	Convolvulaceae	Climber	Native	KNP	-	-
382.	<i>Rosa moschata</i> Herrmann	Kunja	Rosaceae	Climbin g Shrub	Native	Morni- Pinjore	-	-
383.	<i>Roylea cinerea</i> (D.Don) Baill.	Titpatti	Lamiaceae	Shrub	Native	Morni- Pinjore	-	Ambala, Yamuna Nagar
384.	<i>Roystonea regia</i> (Kunth) O.F.Cook	Bottal Palm	Arecaceae	Tree	Planted	Common	Common	Common
385.	<i>Rubia manjith</i> Roxb. ex Fleming	Manjit	Rubiaceae	Climber	Native	KNP, Morni- Pinjore		Ambala, Kurukshetra, Yamuna Nagar, Karnal, Kaithal
386.	<i>Rubus ellipticus</i> Smith	Hisalu	Rosaceae	Shrub	Native	Morni- Pinjore	-	-
387.	<i>Rubus niveus</i> Thunb.	Hazampet	Rosaceae	Shrub	Native	KNP, Morni- Pinjore	-	-
388.	<i>Salix acmophylla</i> Boiss.	Bains Willow	Salicaceae	Tree	Native	Morni- Pinjore	-	-
389.	<i>Salvadora oleoides</i> Decne.	Bada Peelu, Jal, Peelu, Kharo Jhal,	Salvadoraceae	Tree	Native	-	Bhiwani, Faridabad, Jind, Kaithal, Gurgram, Rewari,	Fatehabad, Hisar, Jind, Kaithal, Mewat, Palwal,

							M. Garh,	Panipat, Rohtak, Sirsa, Sonipat
390.	<i>Sapindus mukorossi</i> Gaertn.	Reetha	Sapindaceae	Tree	Planted	Common	Common	Common
391.	<i>Sapindus emarginatus</i> Vahl	Reetha	Sapindaceae	Tree	Planted	Morni- Pinjore	-	-
392.	<i>Saraca asoca</i> (Roxb.) Willd.	Sita ashok	Fabaceae	Tree	Planted	Common	Common	Common
393.	<i>Schleichera oleosa</i> (Lour.) Oken	Kusum	Sapindaceae	Tree	Native	KNP	-	Ambala
394.	<i>Scurrula cordifolia</i> (Wall.) G. Don	Jangali Banda	Loranthaceae	Shrub	Native	KNP, Morni- Pinjore	-	Ambala, Yamuna Nagar
395.	<i>Scurrula pulverulenta</i> (Wall.) G. Don	Jangali Lata	Loranthaceae	Shrub	Native	KNP, Morni- Pinjore	-	-
396.	<i>Searsia mysorensis</i> (G.Don) Moffett (syn. <i>Rhus mysorensis</i> G.Don.)	Dasaro	Anacardiaceae	Shrub	Native	-	M. Garh, Mewat, Rewari	-
397.	<i>Searsia parviflora</i> (Roxb.) F.A.Barkley (syn. <i>Rhus parviflora</i> Roxb.)	Tungala	Anacardiaceae	Shrub	Native	Morni- Pinjore	-	-
398.	<i>Semecarpus anacardium</i> L. f.	Gheru, Bhilwa	Anacardiaceae	Tree	Native	KNP	-	Ambala
399.	<i>Senegalia catechu</i> (L.f.) P.J.H. Hurter & Mabb.	Khair	Fabaceae	Tree	Native	Morni- Pinjore, KNP	-	Ambala, Jind, Karnal, Kurukshetra, Panipat, Yamuna Nagar
400.	<i>Senegalia gageana</i> (Craib) Maslin, Seigler & Ebinger	Safed Khair	Fabaceae	Tree	Native	KNP	-	-
401.	<i>Senegalia modesta</i> (Wall.) P.J.H.Hurter [syn. <i>Acacia modesta</i> Wall.]	Phalia, Phulai	Fabaceae	Tree	Native	Morni- Pinjore	-	Ambala, Hisar, Jhajjar, Jind, Karnal, Kurukshetra, Panipat, Rohtak, Yamuna Nagar
402.	<i>Senegalia pennata</i> (L.)	Sahemabi,	Fabaceae	Climber	Native	KNP, Morni	Mewat	-

	Maslin [<i>Acacia pennata</i> (L.) Willd.]	Aiala				Hills		
403.	<i>Senegalia senegal</i> (L.) Britton [syn. <i>Acacia senegal</i> (L.) Willd.]	Kumbat, Kumatiyo	Fabaceae	Tree	Native	-	Rewari, Gurgram, Bhiwani, M. Garh,	Ambala, Faridabad, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Mewat, Palwal, Panipat, Rohtak, Sirsa, Sonipat,
404.	<i>Senegalia torta</i> (Roxb.) Maslin, Seigler & Ebinger (syn. <i>Acacia torta</i> (Roxb.) Craib.)	Khor	Fabaceae	Shrub	Native	-	Rewari, Gurgram,	-
405.	<i>Senna didymobotrya</i> (Fresen.) H.S.Irwin & Barneby (syn. <i>Cassia didymobotrya</i> Fresen.)	Kala Adusa	Fabaceae	Shrub	Invasive	Morni – Pinjore	-	-
406.	<i>Senna italica</i> Mill.	Chotatarad o	Fabaceae	Shrub	Invasive	-	M. Garh	-
407.	<i>Senna occidentalis</i> (L.) Link (<i>Cassia occidentalis</i> L.)	Kasaunds, Kashudo	Fabaceae	Shrub	Invasive	Common	Common	Common
408.	<i>Senna septemtrionalis</i> (Viviani) H. S. Irwin & Barneby (syn. <i>Cassia septemtrionalis</i> Viv.)	Senna	Fabaceae	Shrub	Invasive	Morni – Pinjore	-	-
409.	<i>Senna siamea</i> (Lam.) H.S.Irwin & Barneby (syn. <i>Cassia siamea</i> Lam.)	Kasod	Fabaceae	Tree	Planted	Common	Common	Common
410.	<i>Senna sulfurea</i> (Collad.) H.S.Irwin & Barneby (syn. <i>Cassia sulfurea</i> DC. ex Collad.)	Surat senna	Fabaceae	Tree	Planted	Common	Common	Common
411.	<i>Senna tora</i> (L.) Roxb.	Panwar, Chakowar	Fabaceae	Shrub	Invasive	Common	Common	Common
412.	<i>Senna auriculata</i> (L.) Roxb.	Awal,	Fabaceae	Shrub	Native	Morni –	-	-

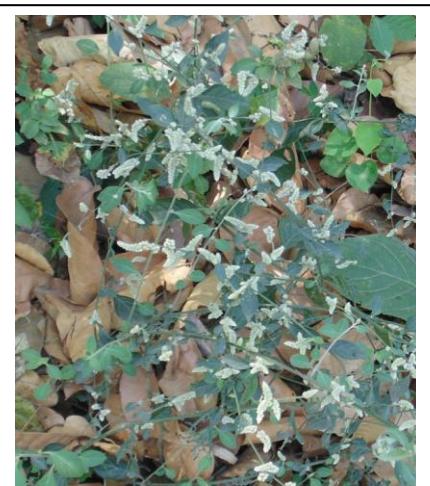
		Tarwar				Pinjore		
413.	<i>Sericostoma pauciflorum</i> Sticks ex Wight	Laggera	Boraginaceae	Shrub	Native	-	Bhiwani, M. Garh, Mewat, Rewari	Palwal, Rohtak
414.	<i>Sesbania bispinosa</i> (Jacq.) W.Wight	Dhadhen	Fabaceae	Shrub	Native		Gurugram	
415.	<i>Sesbania sesban</i> (L.) Merr.	Ekad, Dhancha	Fabaceae	Shrub	Native	Common	Common	Common
416.	<i>Shorea robusta</i> Roxb. ex Gaertner	Sal	Dipterocarpaceae	Tree	Native	Common (Natural)	Common (Planted)	Common (Planted)
417.	<i>Shuteria involucrata</i> (Wall.) Wight & Arn		Fabaceae	Climber	Native	Morni hills	-	Yamuna Nagar
418.	<i>Sida acuta</i> Burm.f.	Bariara	Malvaceae	Shrub	Native	Common	Common	Common
419.	<i>Sida cordifolia</i> L.	Balu, Kharenti	Malvaceae	Shrub	Native	Common	Common	Common
420.	<i>Sida rhombifolia</i> L.	Attibala, Swetbala, Dulana	Malvaceae	Shrub	Native	Common	Common	Common
421.	<i>Sida ovata</i> Forssk.	Bal, Dabi	Malvaceae	Shrub	Native	Common	Common	Common
422.	<i>Smilax perfoliata</i> Lour.		Smilacaceae	Climber	Native	KNP	-	-
423.	<i>Smilax zeylanica</i> L.	Ramdatoon	Smilacaceae	Climber	Native	KNP, Morni Hills	-	-
424.	<i>Soda stocksii</i> (Boiss.) Akhani [syn. <i>Haloxylon recurvum</i> (Moq.) Bunge ex Boiss.]	Khar	Amaranthaceae	Shrub	Native	-	-	Jhajjhar
425.	<i>Solanum erianthum</i> D.Don	Ban Tambakhu	Solanaceae	Shrub	Native	Morni-Pinjore, KNP	-	Ambala, Yamuna Nagar
426.	<i>Solanum incanum</i> L.	Dholi Ringni, Bhatkataiya	Solanaceae	Shrub	Native	KNP	-	-
427.	<i>Solanum sisymbriifolium</i> Lam.	Swetrangani	Solanaceae	Shrub	Invasive	Morni-Pinjore, KNP	-	Ambala, Yamuna Nagar

428.	<i>Solanum torvum</i> Swartz.	Van Kataiya	Solanaceae	Shrub	Invasive	Morni-Pinjore, KNP	Mewat, Gurugram	-
429.	<i>Solanum virginianum</i> L. (Syn. <i>S. surattense</i> Burm.f.)	Kateli	Solanaceae	Shrub	Native	KNP	-	-
430.	<i>Solanum viarum</i> Dunal	Kataiya	Solanaceae	Shrub	Invasive	Morni-Pinjore, KNP	-	--
431.	<i>Solena amplexicaulis</i> (Lam.) Gandhi	Tarali	Cucurbitaceae	Climber	Native	KNP	-	-
432.	<i>Solena heterophylla</i> Lour.	Ban Kakri	Cucurbitaceae	Climber	Native	KNP	-	-
433.	<i>Spermadictyon suaveolens</i> Roxb.	Padera	Rubiaceae	Shrub	Native	KNP, Morni hills	-	-
434.	<i>Spondias pinnata</i> (L.f.) Kurz	Amada	Anacardiaceae	Tree	Planted	Common	Common	Common
435.	<i>Stephania glabra</i> (Roxb.) Miers	Pathbhed, Aaknadi	Menispermaceae	Climber	Native	KNP, Morni hills	-	-
436.	<i>Stephanotis volubilis</i> (L.f.) S.Reuss, Liede & Meve [Syn. <i>Wattakaka volubilis</i> (L.f.) Stapf]	Akadbel. Dangdodha i	Apocynaceae	Climber	Native	-	Bhiwani, Faridabad, Gurgaon, M. Garh, Mewat, Rewari	-
437.	<i>Sterculia urens</i> Roxb.	Gulu, Karya, Katira	Malvaceae	Tree	Native	-	Mewat, Gurugram	-
438.	<i>Sterculia villosa</i> Roxb.	Udal, Godhara	Malvaceae	Tree	Native	KNP, Morni hills	-	Ambala, Yamuna Nagar
439.	<i>Stereospermum chelonoides</i> (L.f.) DC.	Padal	Bignoniaceae	Tree	Native	KNP, Morni hills	-	-
440.	<i>Streblus asper</i> Lour.	Sihora	Moraceae	Shrub	Native	Morni - Pinjore	-	Ambala, Yamuna Nagar, Karnal, Kaithal
441.	<i>Strobilanthes atropurpurea</i> Nees	Pale Trumpet Coneflower	Acanthaceae	Shrub	Native	KNP	-	-
442.	<i>Strobilanthes auriculata</i> Nees	Eared Leaf Coneflower	Acanthaceae	Shrub	Native	Morni-		

						Pinjore		
443.	<i>Strobilanthes wallichii</i> Nees	Pale Trumpet Coneflower	Acanthaceae	Shrub	Native	KNP	-	-
444.	<i>Strychnos nux-vomica</i> L.	Nuxvomica Cuchala	Loganiaceae	Tree	Planted	-	-	Sonipat
445.	<i>Suaeda fruticosa</i> (L.) Forsk	Lunaki	Amaranthaceae	Shrub	Native	-	Rewari, Mewat,	Hisar, Jind, Jhajjar
446.	<i>Swietenia mahagoni</i> (L.) Jacq.	Mahogani	Meliaceae	Tree	Planted	Morni-Pinjore	Gurgaon	Ambala, Kaithal
447.	<i>Syzygium cuminii</i> Skeels	Jamun	Myrtaceae	Tree	Native	Common	Common	Common
448.	<i>Syzygium jambos</i> (L.) Alston	Jangali Jamun, Gulab Jamun	Myrtaceae	Tree	Planted	Common	Common	Common
449.	<i>Tabernaemontana divaricata</i> (L.) R.Br. ex Roem. & Schult.	Chadani	Apocynaceae	Shrub	Planted	Common	Common	Common
450.	<i>Tadehagi triquetrum</i> (L.) H. Ohashi,	Winged-Stalk Desmodium,	Fabaceae	Shrub	Native	KNP, Morni-Pinjore	-	-
451.	<i>Tamarindus indica</i> L.	Imali	Fabaceae	Tree	Planted	Common	Common	Common
452.	<i>Tamarix ericoides</i> Rottl.	Javuro	Tamaricaceae	Tree	Native	-	Gurugram, Mewat	-
453.	<i>Tamarix indica</i> Willd. (<i>Tamarix troupii</i> Hole)	Jhau	Tamaricaceae	Tree	Native	-	Gurugram, Bhiwani	-
454.	<i>Tamarix aphylla</i> (L.) H.Karst.	Llajhar	Tamaricaceae	Tree	Native	-	Bhiwani, Faridabad, Gurgram, M. Garh, Mewat, Rewari,	Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Palwal, Panipat, Rohtak, Sirsa, Sonepat
455.	<i>Tamarix dioica</i> Roxb. ex Roth	Jhau	Tamaricaceae	Tree	Native	Morni-Pinjore	Bhiwani, Faridabad, M. Garh, Mewat, , Rewari	-
456.	<i>Tamarix ramosissima</i> Ledeb	Tamarix	Tamaricaceae	Tree	Native	-	Rewari	Palwal

	.							
457	<i>Tamilnadia uliginosa</i> (Retz.) Tirveng. & Sastre [<i>Randia uliginosa</i> (Retz.) Poir.]	Pindalu	Rubiaceae	Tree	Native	Morni-Pinjore	-	-
458	<i>Tecomastans</i> (L.) Juss. ex Kunth	Piliya	Bignoniaceae	Tree	Planted	Common	Common	Common
459	<i>Tecomella undulata</i> (Roxb.) Seeman	Lohera, Roheda	Bignoniaceae	Tree	Native	-	Bhiwani, Faridabad, Gurgaon,, Rewari, M. Garh, Mewat,	Ambala, Fatehabad, Hisar, Jhajjar, Jind, Karnal, Panipat, Rohtak, Sirsa
460	<i>Tectona grandis</i> L.	Sagwan, Sagun	Lamiaceae	Tree	Planted	Common	Common	Common
461	<i>Tephrosia candida</i> (Roxb.) DC.	Safed Hori Matar	Fabaceae	Shrub	Native	-	-	Ambala, Kurukshetra
462	<i>Tephrosia falcatiformis</i> Ramaswami	Jhojharu	Fabaceae	Shrub	Native	-	M. Garh, Rewari	-
463	<i>Tephrosia purpurea</i> (L.) Persoon	Biyani, Sarphanko, Bisoni	Fabaceae	Shrub	Native	-	Common	Common
464	<i>Tephrosia uniflora</i> Pers. Subsp. <i>petrosa</i> (Blatt. & Hallb.) Gillett & Ali	Sarphonkha	Fabaceae	Shrub	Native	-	Rewari, Mewat	-
465	<i>Terminalia angeissiana</i> Gere & Boatwr. [syn. <i>Anogeissus latifolia</i> (Roxb. ex DC) Wall ex Gill.]	Dhao, Dhau	Combretaceae	Tree	Native	Morni-Pinjore, KNP	-	-
466	<i>Terminalia arjuna</i> (Roxb. Ex DC.) Wight & Arn.	Arjun, Arjan	Combretaceae	Tree	Native (mostly planted)	Common	Common (mostly planted)	Common (mostly planted)
467	<i>Terminalia bellirica</i> (Gaertn.) Roxb.	Baheda	Combretaceae	Tree	Native	Common (Native)	Common (mostly planted)	Common (mostly planted)
468	<i>Terminalia chebula</i> Retz.	Harad	Combretaceae	Tree	Native (mostly planted)	Common (Native)	Common (mostly planted)	Common (mostly planted)
469	<i>Terminalia coronata</i> (Stapf)	Dhauro,	Combretaceae	Tree	Native	-		-

	Gere & Boatwr. (syn. <i>Anogeissus sericea</i> var. <i>nummularia</i> King ex Duthie)	Indoko, Dhoh					Mewat	
470	<i>Terminalia coronata</i> var. <i>parvifolia</i> (C.B.Clarke) Chakrab. & Anand Kumar (syn. <i>Anogeissus sericea</i> Brandis)	Daukada, Dhawral	Combretaceae	Tree	Native	-	Mewat	-
471	<i>Terminalia elliptica</i> Willd (syn. <i>Terminalia alata</i> B.Heyne ex Roth)	Asana, Sain	Combretaceae	Tree	Native	KNP, Morni hills	-	Ambala
472	<i>Terminalia pendula</i> (Edgew.) Gere & Boatwr. (<i>Anogeissus pendula</i> Edgew.)	Kardhai, Dhau, Dhauro, Chau, Endruk	Combretaceae	Tree	Native	-	Faridabad, Gurgaon, M. Garh, Mewat, Rewari	Palwal, Fatehabad,
473	<i>Terminalia catappa</i> L.	Desibadam	Combretaceae	Tree	Planted	-	Gurugram	-
474	<i>Thespesia lampas</i> (Cav.) Dalzell & Gibson	Jangali bhindi, Bankapasi	Malvaceae	Shrub	Native	KNP, Morni hills		Ambala
475	<i>Thunbergia fragrans</i> Roxb.	Chimeen	Acanthaceae	Climber	Native	KNP, Morni hills		Yamuna Nagar
476	<i>Tinospora cordifolia</i> (Willd.) Miers	Giloy, Gulbel, Uraijo, Arjuna	Menispermaceae	Climber	Native	Common	Common	Common
477	<i>Toona ciliata</i> M.Roem. (syn. <i>Cedrela toona</i> Roxb. ex Rottler & Willd.)	Toon	Meliaceae	Tree	Planted	Common	Common	Common
478	<i>Trema orientalis</i> (L.) Blume	Jeewanti	Cannabaceae	Tree	Native	KNP, Morni-Pinjore	-	-
479	<i>Trema politoria</i> (Planch.) Blume	Khaishagi	Cannabaceae	Tree	Native	KNP, Morni-Pinjore	-	Yamuna Nagar
480	<i>Triadica sebifera</i> (L.) Small		Euphorbiaceae	Tree	Planted	KNP,	-	Ambala


		Talcharbi			(Naturalized)	Morni-Pinjore		
481.	<i>Trichosanthes cucumerina</i> L.	Jangali Chinchida Chichoda	Cucurbitaceae	Climber	Native		Gurgram	Karnal, Kurukshetra, Yamuna Nagar
482.	<i>Triumfetta rhomboidea</i> Jacq.	Pali, Leehing, Chiryari	Malvaceae	Shrub	Native	Common	Common	Common
483.	<i>Typha elephantina</i> Roxb.	Pater, Patera	Typhaceae	Shrub	Native	-	Gurgram	Yamuna Nagar
484.	<i>Uraria picta</i> (Jacq.) DC.	Pitwan, Dabar	Fabaceae	Shrub	Native	Morni-Pinjore	-	-
485.	<i>Urena lobata</i> L.	Chitlang, Lapetua, Bachita, Unga	Malvaceae	Shrub	Native	KNP, Morni-Pinjore	Bhiwani, Gurgaon, M. Garh, Mewat, Palwal, Rewari,	Ambala, Yamuna Nagar,
486.	<i>Vachellia eburnea</i> (L.f.) P.J.H.Hurter & Mabb. [syn. <i>Acacia eburnea</i> (L. f.) Willd.]	Pahadi Kikar	Fabaceae	Small Tree	Native	KNP	-	-
487.	<i>Vachellia farnesiana</i> (L.) Wi [syn. <i>Acacia farnesiana</i> (L.) Willd.]	Vilayati Kikar	Fabaceae	Shrub	Planted	Common	Common	Common
488.	<i>Vachellia jacquemontii</i> (Benth.) Ali [syn. <i>Acacia jacquemontii</i> Benth.]	Bu-banvali, Ratio-banwal	Fabaceae	Shrub	Native	-	Gurugram, Mewat, Rewari	Hisar
489.	<i>Vachellia leucophloea</i> (Roxb.) Maslin, Seigler & Ebinger [syn. <i>Acacia</i> <i>leucophloea</i> (Roxb.) Willd.]	Reru, Urajio, Arjuna	Fabaceae	Tree	Native	Morni hills	Gurgaon, Bhiwani, Faridabad, M. Garh,	Ambala, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Mewat, Palwal, Panipat, Rewari, Rohtak, Sirsa, Sonipat, Kaithal
490.	<i>Vachellia nilotica</i> subsp. <i>indica</i> (Benth.) Kyal. &	Banbal, Babool	Fabaceae	Tree	Native	Common	Common	Common

	Boatwr [syn. <i>Acacia nilotica</i> (L.) Del.ssp. <i>indica</i> (Benth.) Brenan]							
491.	<i>Vachellia tortilis</i> (Forssk.) Galasso & Banfi [syn. <i>Acacia tortilis</i> (Forssk.) Hayne]	Aiala	Fabaceae	Shrub	Native	-	Bhiwani, Faridabad, Gurgram, M. Garh, Mewat, Rewari	Fatehabad, Hisar, Jind, Karnal, Kurukshetra, Palwal, Panipat, Sirsa
492.	<i>Vallaris solanacea</i> (Roth.) Kuntze	Dudhi ki bel	Apocynaceae	Climber	Native	KNP, Morni-Pinjore,	Gurugram, Bhiwani, Faridabad, Rewari, M. Garh, Mewat,	Ambala, Fatehabad, Hisar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Sonipat, Yamuna Nagar
493.	<i>Ventilago denticulata</i> Willd.	Raidhani	Rhamnaceae	Climber	Native	KNP	-	-
494.	<i>Vincetoxicum spirale</i> (Forssk.) D.Z.Li [<i>Blyttia spiralis</i> (Forssk.) D.V.Field & J.R.I.Wood]	Akaribel Dahiyal	Apocynaceae	Climber	Native	-	Gurugram	Bhiwani, Jind, Karnal, Panipat
495.	<i>Viscum loranthi</i> Elmer	Jungali band	Santalaceae	Shrub	Native	Morni hills	-	-
496.	<i>Vitex negundo</i> L.	Nirgundi	Lamiaceae	Shrub	Native	KNP, Morni-Pinjore,	Common	Kurukshetra, Yamuna Nagar
497.	<i>Vitex peduncularis</i> Wall. ex Schauer	Urikshibiman	Lamiaceae	Tree	Planted	Morni-Pinjor	-	-
498.	<i>Vitis vinifera</i> L.	Angur	Vitaceae	Climber	Planted	Common	Common	Common
499.	<i>Volkameria inermis</i> L. [Syn. <i>Clerodendrum inerme</i> (L.) Gaertner]	Sankuppi	Lamiaceae	Shrub	Planted	Common	Common	Common
500.	<i>Wendlandia heynei</i> (Roemer & Schultes) Santapau & Merchant	China	Rubiaceae	Tree	Native	Morni-Pinjore, KNP	-	-
501.	<i>Withania somnifera</i> (L.) Dunal	Ashwagandha	Solanaceae	Shrub	Planted	Common	Common	Common

502.	<i>Woodfordia fruticosa</i> (L.) Kurz	Dhavi, Dhai	Lythraceae	Tree	Native	Morni-Pinjore, KNP	-	Ambala, Yamuna Nagar
503.	<i>Wrightia arborea</i> (Dennst.) Mabberley	Dudhi, Indrjau, Bhakar-Aak, Kerno	Apocynaceae	Tree	Native	Morni-Pinjore, KNP	-	Ambala, Yamuna Nagar
504.	<i>Wrightia tinctoria</i> R.Br.	Bhakar-Aak, Kerno	Apocynaceae	Tree	Native	-	Gurugram, Rewari, Bhiwani	-
505.	<i>Xanthium strumarium</i> L.	hota Gokhru	Asteraceae	Shrub	Native	Common	Common	Common
506.	<i>Xylosma longifolia</i> Clos	Katari	Salicaceae	Tree	Native	KNP, Morni hills	-	-
507.	<i>Zanthoxylum armatum</i> DC.	Tejbal, Timbur	Rutaceae	Shrub	Native	Morni hills	-	-
508.	<i>Ziziphus glaberrima</i> (Sedgwick) Santapau	Kath ber, Kaath ber	Rhamnaceae	Tree	Native	KNP. Morni hills	-	-
509.	<i>Ziziphus jujuba</i> Mill.	Ber	Rhamnaceae	Tree	Native	Common	Common	Common
510.	<i>Ziziphus nummularia</i> (Burm.f.) Wight & Arn.	Jharkhi, Jharberi, Jhadiber	Rhamnaceae	Shrub	Native	Morni hills	Common	Common
511.	<i>Ziziphus oenoplia</i> L.	Makoh, Bamolan	Rhamnaceae	Climbing Shrub	Native	Morni hills, KNP	Gurugram, Rewari, Bhiwani	Ambala
512.	<i>Ziziphus xylopyrus</i> (Retz.) Willd.	Kathber	Rhamnaceae	Tree	Native	KNP	-	Ambala

Shivalik Ranges: Yamuna Nagar (Kalesar National Park, Morni Hills, Pinjore); **Aravalli Range:** Mewat, Mahendergarh, Rewari, Gurugao, Faridabad, Bhiwani; **Plains:** (Ambala, Fatehabad, Hisar, Jhajjar, Jind, Kaithal (including Sarswati Conservation Reserve), Karnal, Kurukshetra, Palwal, Panipat, Rohtak, Sirsa, Sonipat

Plate 1

<i>Abelmoschus moschatus</i>	<i>Abrus precatorius</i>	<i>Abutilon indicum</i>
<i>Achyranthes aspera</i>	<i>Adansonia digitata</i>	<i>Adenanthera microsperma</i>
<i>Adina cordifolia</i>	<i>Aegle marmelos</i>	<i>Aerva javanica</i>

Plate 2

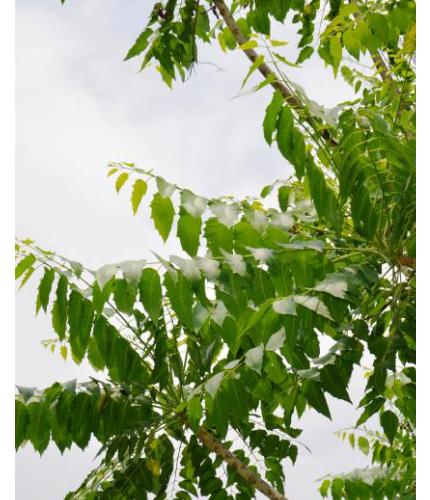

<i>Agathis robusta</i>	<i>Agave vivipara</i>	<i>Ailanthus excelsa</i>
<i>Albizia chinensis</i>	<i>Albizia lebbeck</i>	<i>Albizia odoratissima</i>
<i>Albizia procera</i>	<i>Alhagi maurorum</i>	<i>Alstonia scholaris</i>

Plate 3

<i>Ampelocissus latifolia</i>	<i>Annona squamosa</i>	<i>Antidesma acidum</i>
<i>Antigonon leptopus</i>	<i>Ardisia solanacea</i>	<i>Artobotrys hexapetalus</i>
<i>Artocarpus heterophyllus</i>	<i>Artocarpus lacucha</i>	<i>Asclepias curassavica</i>

Plate 4

<i>Asparagus adscendens</i>	<i>Asparagus racemosus</i>	<i>Aspidopterys wallichii</i>
<i>Averrhoa carambola</i>	<i>Azadirachta indica</i>	<i>Balanites aegyptiaca</i>
<i>Baliospermum montanum</i>	<i>Bambusa bambos</i>	<i>Barleria cristata</i>

Plate 5

*Barleria prionitis**Barringtonia acutangula**Bauhinia purpurea**Bauhinia racemosa**Bauhinia variegata**Beaucarne recurvata**Berberis asiatica**Berberis lycium**Bergera koenigii*

Plate 6


<i>Biancaea decapetala</i>	<i>Calliandra haematocephala</i>	<i>Bischofia javanica</i>
<i>Bixa orellana</i>	<i>Boehmeria macrophylla</i>	<i>Bombax ceiba</i>
<i>Borassus flabellifer</i>	<i>Boswellia serrata</i>	<i>Bougainvillea spectabilis</i>

Plate 7

<i>Breynia vitis-idaea</i>	<i>Bridelia retusa</i>	<i>Broussonetia papyrifera</i>
<i>Buchanania lanzae</i>	<i>Buddleja asiatica</i>	<i>Butea monosperma</i>
<i>Caesalpinia pulcherrima</i>	<i>Cajanus scarabaeoides</i>	<i>Callicarpa macrophylla</i>

Plate 8

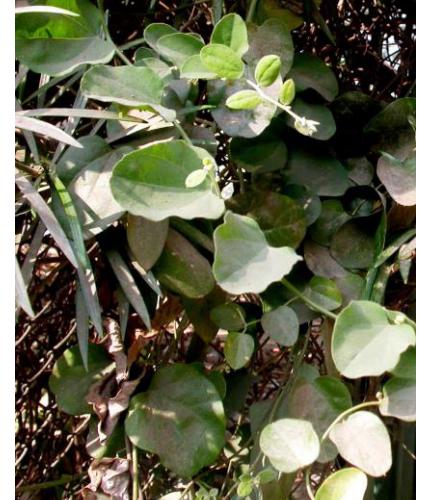

<i>Calotropis gigantea</i>	<i>Calotropis procera</i>	<i>Canavalia gladiata</i>	<i>Capparis decidua</i>
<i>Capparis sepiaria</i>	<i>Capparis zeylanica</i>	<i>Cardiospermum halicacabum</i>	
<i>Careya arborea</i>	<i>Carissa spinarum</i>	<i>Carissa carandas</i>	

Plate 9

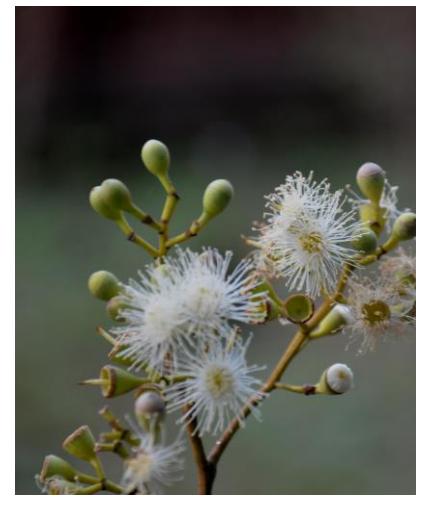
<i>Carthamus tinctorius</i>	<i>Caryota urens</i>	<i>Cascabela thevetia</i>
<i>Casearia graveolens</i>	<i>Casearia tomentosa</i>	<i>Cassia fistula</i>
<i>Cassia javanica subsp. nodosa</i>	<i>Cassine glaucum</i>	<i>Casuarina equisetifolia</i>


Plate 10

<i>Catamixis baccharoides</i>	<i>Catunaregam spinosa</i>	<i>Cayratia trifolia</i>
<i>Cebatha pendula</i>	<i>Ceiba speciosa</i>	<i>Celastrus paniculata</i>
<i>Celosia argentea</i>	<i>Celtis tetrandra</i>	<i>Cestrum parqui</i>


Plate 11

<i>Cestrum nocturnum</i>	<i>Chukrasia tabularis</i>	<i>Cissampelos pareira</i>
<i>Cissus quadrangularis</i>	<i>Cissus repanda</i>	<i>Citrus aurantiifolia</i>
<i>Citrus aurantium</i>	<i>Citrus limon</i>	<i>Citrus maxima</i>


Plate 12

<i>Citrus medica</i>	<i>Clematis buchananiana</i>	<i>Clematis gouriana</i>
<i>Clematis roylei</i>	<i>Cleome viscosa</i>	<i>Clerodendrum chinense</i>
<i>Clerodendrum indicum</i>	<i>Clerodendrum infortunatum</i>	<i>Clerodendrum phlomidis</i>

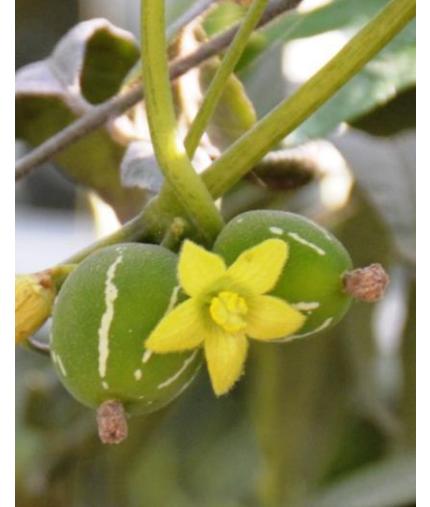
Plate 13

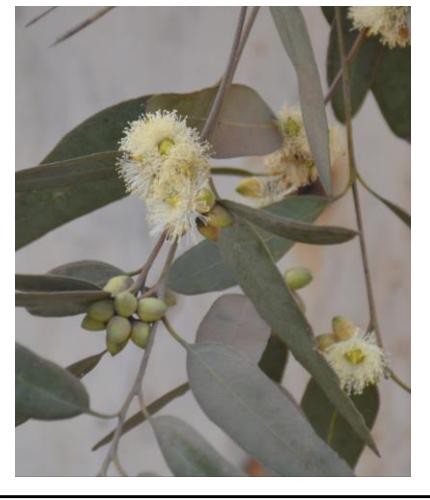
<i>Clitoria ternatea</i>	<i>Coccinia grandis</i>	<i>Cocculus hirsutus</i>
<i>Codariocalyx motorius</i>	<i>Colebrookea oppositifolia</i>	<i>Combretum indicum</i>
<i>Commiphora wightii</i>	<i>Conocarpus lancifolius</i>	<i>Corchorus aestuans</i>

Plate 14

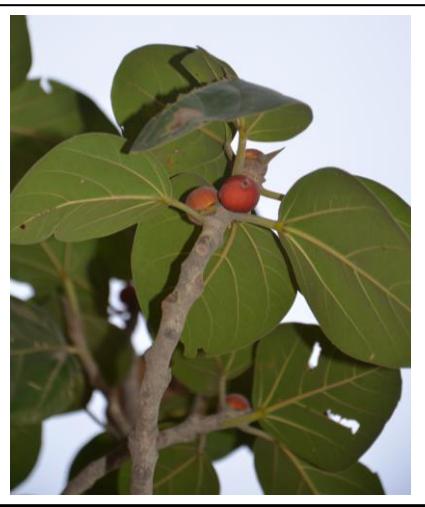
<i>Corchorus capsularis</i>	<i>Cordia dichotoma</i>	<i>Cordia sinensis</i>
<i>Cordia vestita</i>	<i>Cordia macleodii</i>	<i>Corymbia citriodora</i>
<i>Crateva magna</i>	<i>Crateva adansonii</i>	<i>Crotalaria burhia</i>

Plate 15

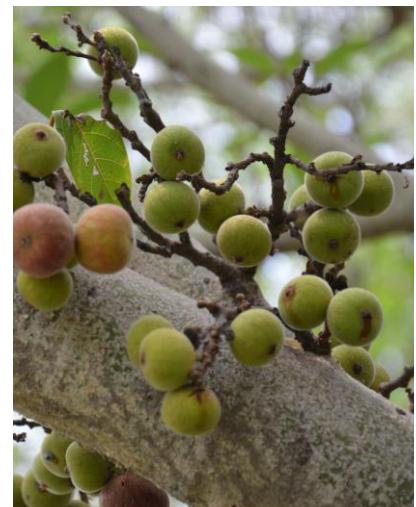


<i>Crotalaria medicaginea</i>	<i>Crotalaria sericea</i>	<i>Croton bonplandianus</i>
<i>Cryptolepis buchananii</i>	<i>Cucumis maderaspatanus</i>	<i>Dalbergia sissoo</i>
<i>Dalbergia lanceolaria</i>	<i>Datura stramonium</i>	<i>Debregeasia saeneb</i>



Plate 16

<i>Delonix regia</i>	<i>Dendrocalamus hamiltonii</i>	<i>Dendrocalamus strictus</i>
<i>Dendrophthoe falcata</i>	<i>Dichrostachys cinerea</i>	<i>Dillenia indica</i>
<i>Dioscorea belophylla</i>	<i>Dioscorea bulbifera</i>	<i>Diospyros malabarica</i>


Plate 17

<i>Diospyros melanoxylon</i>	<i>Diospyros montana</i>	<i>Diplocyclos palmatus</i>
<i>Distimake aegyptius</i>	<i>Dodonaea viscosa</i>	<i>Dombeya burgessiae</i>
<i>Duhaldea cappa</i>	<i>Duranta erecta</i>	<i>Ehretia laevis</i>


Plate 18

<i>Ehretia acuminata</i>	<i>Engelhardtia spicata</i>	<i>Ephedra ciliata</i>
<i>Eranthemum pulchellum</i>	<i>Eriobotrya japonica</i>	<i>Erythrina suberosa</i>
<i>Erythrina variegata</i>	<i>Eucalyptus tereticornis</i>	<i>Eucalyptus camaldulensis</i>

Plate 19

<i>Eucalyptus paniculata</i>	<i>Euphorbia caducifolia</i>	<i>Euphorbia nerifolia</i>
<i>Euphorbia pulcherrima</i>	<i>Euphorbia royleana</i>	<i>Falconeria insignis</i>
<i>Fernandoa adenophylla</i>	<i>Ficus auriculata</i>	<i>Ficus benghalensis</i>

Plate 20

<i>Ficus benjamina</i>	<i>Ficus elastica</i>	<i>Ficus hispida</i>
<i>Ficus mollis</i>	<i>Ficus palmata</i> subsp. <i>virgata</i>	<i>Ficus racemosa</i>
<i>Ficus religiosa</i>	<i>Ficus semicordata</i>	<i>Ficus virens</i>

Plate 21

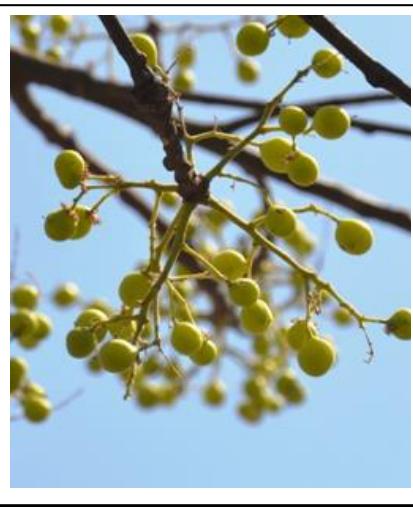
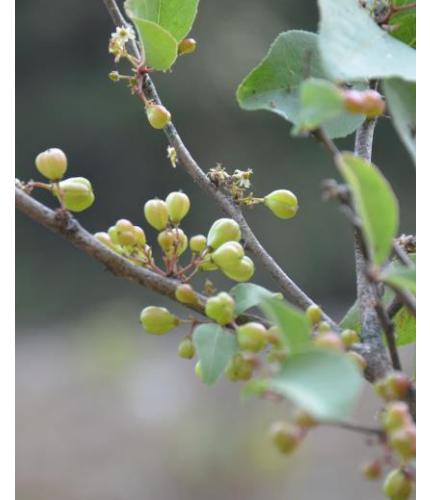


<i>Ficus rumphii</i>	<i>Flacourтия indica</i>	<i>Flacourтия jangomas</i>
<i>Flemingia bracteata</i>	<i>Flemingia macrophylla</i>	<i>Flemingia strobilifera</i>
<i>Flueggea leucopyrus</i>	<i>Gardenia jasminoides</i>	<i>Garuga pinnata</i>

Plate 22

<i>Glochidion heyneanum</i>	<i>Gloriosa superba</i>	<i>Glycyrrhiza glabra</i>
<i>Gmelina arborea</i>	<i>Gossypium arboreum</i>	<i>Grevillea robusta</i>
<i>Grewia asiatica</i>	<i>Grewia optiva</i>	<i>Grewia tenax</i>

Plate 23

<i>Grewia flavescens</i>	<i>Grewia hirsuta</i>	<i>Grewia serrulata</i>
<i>Grewia tiliifolia</i>	<i>Guilandina bonduc</i>	<i>Gymnosporia emarginata</i>
<i>Hamelia patens</i>	<i>Helicteres isora</i>	<i>Helinus lanceolatus</i>

Plate 24

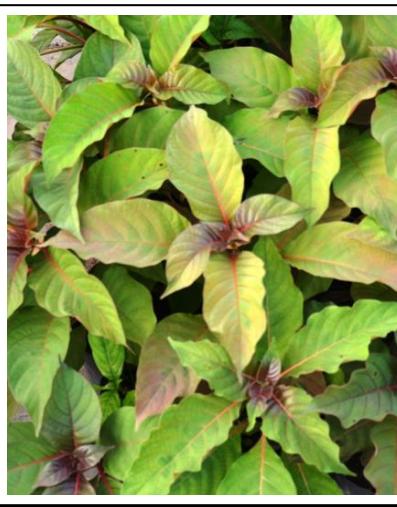
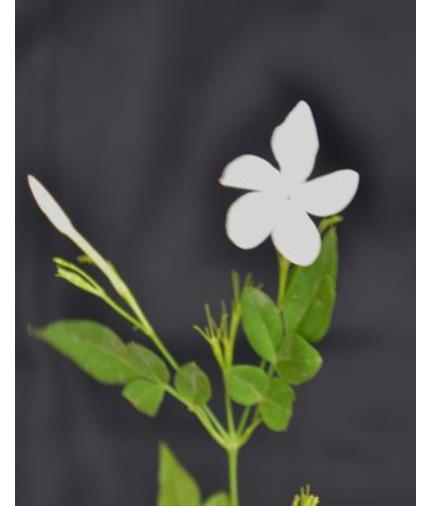


<i>Hemidesmus indicus</i>	<i>Hibiscus rosa-sinensis</i>	<i>Hibiscus micranthus</i>
<i>Hibiscus syriacus</i>	<i>Hiptage benghalensis</i>	<i>Holarrhena pubescens</i>
<i>Holoptelea integrifolia</i>	<i>Hymenodictyon orixense</i>	<i>Ichnocarpus frutescens</i>

Plate 25

<i>Indigofera atropurpurea</i>	<i>Indigofera cassioides</i>	<i>Indigofera heterantha</i>
<i>Ipomea pes-tigridis</i>	<i>Ipomea cairica</i>	<i>Ipomea carnea subsp. fistulosa</i>
<i>Ipomea hederifolia</i>	<i>Ipomea nil</i>	<i>Ipomea triloba</i>

Plate 26

<i>Ixora coccinea</i>	<i>Jacaranda mimosifolia</i>	<i>Jasminum arborescens</i>
<i>Jasminum multiflorum</i>	<i>Jasminum sambac</i>	<i>Jasminum grandiflorum</i>
<i>Jasminum humile</i>	<i>Jatropha curcas</i>	<i>Jatropha gossypifolia</i>

Plate 27

<i>Justicia adhatoda</i>	<i>Kigelia africana</i>	<i>Kydia calycina</i>
<i>Lagerstroemia indica</i>	<i>Lagerstroemia parviflora</i>	<i>Lagerstroemia speciosa</i>
<i>Lannea coromandelica</i>	<i>Lantana camara</i>	<i>Lawsonia inermis</i>

Plate 28

<i>Leea asiatica</i>	<i>Leptadenia pyrotechnica</i>	<i>Leptadenia reticulata</i>
<i>Leptopus cordifolius</i>	<i>Lespedeza juncea</i> var. <i>sericea</i>	<i>Leucaena leucocephala</i>
<i>Leucomeris spectabilis</i>	<i>Lippia alba</i>	<i>Litchi chinensis</i>

Plate 29

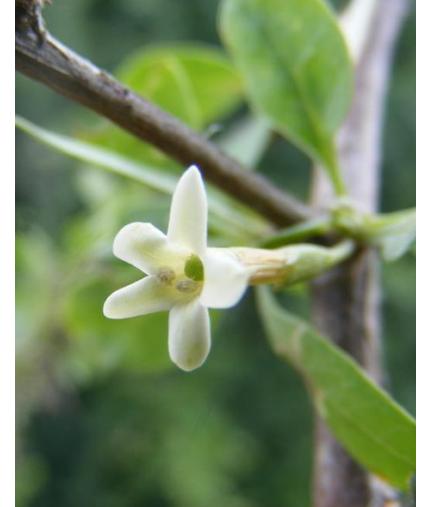
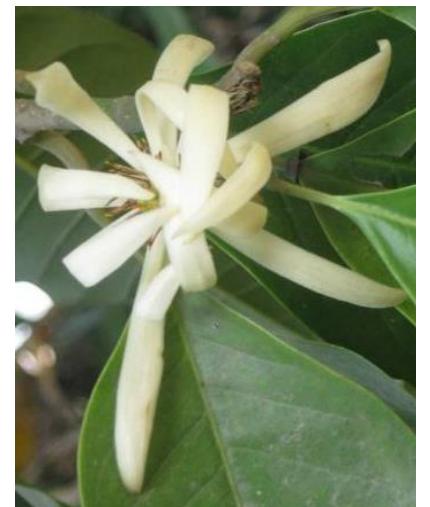


<i>Litsea glutinosa</i>	<i>Livistona chinensis</i>	<i>Lycium barbarum</i>
<i>Madhuca longifolia</i> var. <i>latifolia</i>	<i>Maerua oblongifolia</i>	<i>Magnolia champaca</i>
<i>Mallotus nudiflorus</i>	<i>Mallotus philippensis</i>	<i>Malvastrum coromandelianum</i>

Plate 30

<i>Mangifera indica</i>	<i>Manilkara zapota</i>	<i>Manilkara hexandra</i>
<i>Maoutia puya</i>	<i>Marsdenia roylei</i>	<i>Martynia annua</i>
<i>Melaleuca viminalis</i>	<i>Melia azedarach</i>	<i>Melochia corchorifolia</i>

Plate 31

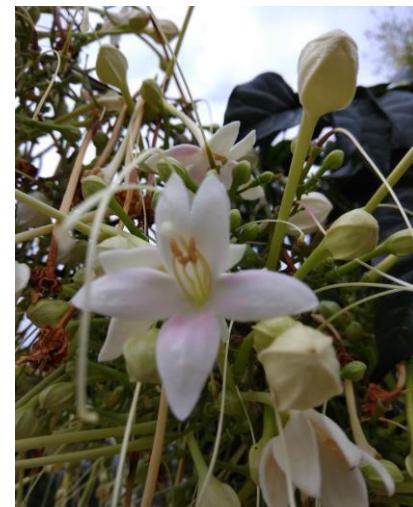

<i>Merremia hederacea</i>	<i>Mesua ferrea</i>	<i>Miliusa velutina</i>
<i>Millettia extensa</i>	<i>Millettia peguensis</i>	<i>Millingtonia hortensis</i>
<i>Mimosa rubicaulis</i>	<i>Mimosa pudica</i>	<i>Mimusops elengi</i>

Plate 32

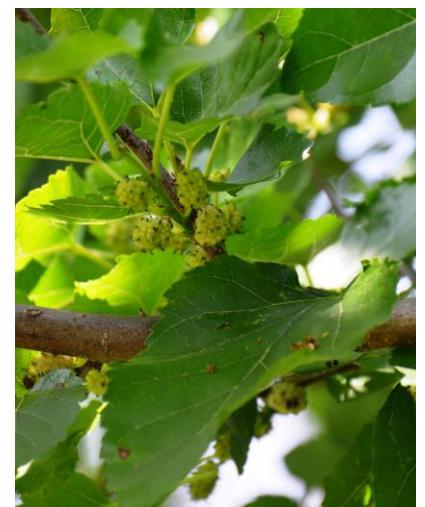

<i>Mitragyna parvifolia</i>	<i>Momordica dioica</i>	<i>Morinda pubescens</i>
<i>Morinda citrifolia</i>	<i>Moringa oleifera</i>	<i>Morus alba</i>
<i>Mucuna pruriens</i>	<i>Mucuna nigricans</i>	<i>Mukia maderaspatana</i>

Plate 33

<i>Murraya paniculata</i>	<i>Myrsine africana</i>	<i>Naringi crenulata</i>
<i>Neolamarckia cadamba</i>	<i>Nerium oleander</i>	<i>Nicandra physalodes</i>
<i>Nyctanthes arbortristis</i>	<i>Olax nana</i>	<i>Olea glandulifera</i>

Plate 34

A branch of Olea paniculata showing several green, oval-shaped fruits and large, dark green leaves.	A branch of Opuntia dillenii showing several yellow flowers with red centers, and green, spiny pads.	A branch of Opuntia elatior showing a pink flower and a green, spiny pad.
<i>Olea paniculata</i>	<i>Opuntia dillenii</i>	<i>Opuntia elatior</i>
A dense, green shrub of Oroxylum indicum with many small, oval leaves.	A branch of Osiris lanceolata showing several green, oval leaves and a small green fruit.	A close-up of a pink flower of Ototropis multiflora.
<i>Oroxylum indicum</i>	<i>Osiris lanceolata</i>	<i>Ototropis multiflora</i>
A branch of Oxystelma esculentum showing several white flowers with pink centers and green leaves.	A branch of Pachygone laurifolia showing several green leaves and small flowers.	A branch of Parkinsonia aculeata showing several yellow flowers and green leaves.
<i>Oxystelma esculentum</i>	<i>Pachygone laurifolia</i>	<i>Parkinsonia aculeata</i>

Plate 35

<i>Parthenocissus semicordata</i>	<i>Passiflora foetida</i>	<i>Passiflora suberosa</i>
<i>Pavetta indica</i>	<i>Pergularia daemia</i>	<i>Persicaria chinensis</i>
<i>Phanera retusa</i>	<i>Phanera vahlii</i>	<i>Phlogacanthus thyrsiformis</i>

Plate 36

<i>Phoenix loureiroi</i>	<i>Phoenix acaulis</i>	<i>Phoenix sylvestris</i>
<i>Phyllanthus emblica</i>	<i>Phyllanthus reticulatus</i>	<i>Phyllodium pulchellum</i>
<i>Piliostigma malabaricum</i>	<i>Pinus roxburghii</i>	<i>Pistacia chinensis</i> subsp. <i>integerrima</i>

Plate 37

<i>Pithecellobium dulce</i>	<i>Pleurolobus gangeticus</i>	<i>Plumbago arabica</i>
<i>Plumbago zeylanica</i>	<i>Plumeria rubra</i>	<i>Pogostemon benghalense</i>
<i>Polhillides velutina</i>	<i>Polyalthia longifolia</i>	<i>Populus deltoides</i>

Plate 38

<i>Poranopsis paniculata</i>	<i>Pouzolzia rugulosa</i>	<i>Premna barbata</i>
<i>Premna latifolia</i>	<i>Prosopis juliflora</i>	<i>Prosopis cineraria</i>
<i>Prunus persica</i>	<i>Prunus domestica</i> subsp. <i>insititia</i>	<i>Pseudocaryopteris bicolor</i>

Plate 39

<i>Psidium guajava</i>	<i>Psilanthus bengalensis</i>	<i>Pterospermum acerifolium</i>
<i>Pterygota alata</i>	<i>Pueraria tuberosa</i>	<i>Punica granatum</i>
<i>Putranjiva roxburghii</i>	<i>Pyracantha crenulata</i>	<i>Pyrostegia venusta</i>

Plate 40

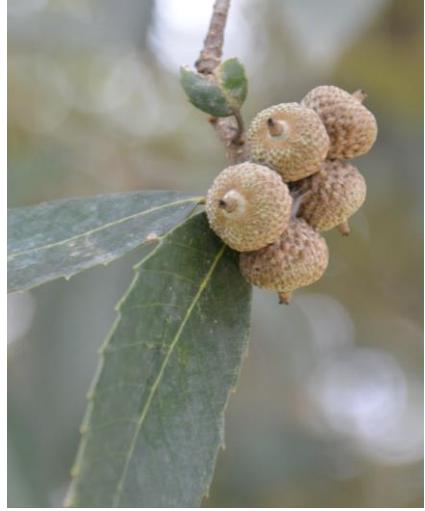
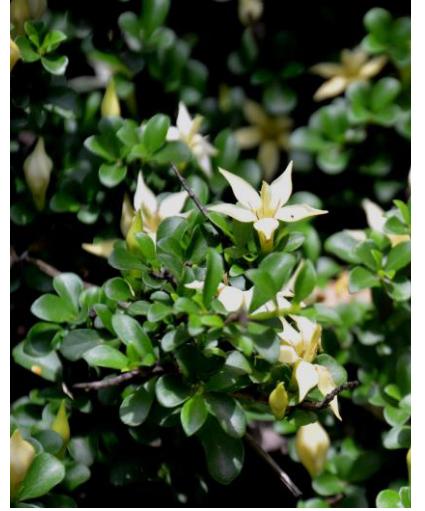


<i>Pyrus pashia</i>	<i>Quercus leucotrichophora</i>	<i>Randia tetrasprema</i>
<i>Rauvolfia serpentina</i>	<i>Rhamnus triqueter</i>	<i>Rhynchosia minima</i>
<i>Rhynchosia rothii</i>	<i>Ricinus communis</i>	<i>Rivea ornata</i>

Plate 41

<i>Rosa moschata</i>	<i>Roylea cinerea</i>	<i>Roystonea regia</i>
<i>Rubia manjith</i>	<i>Rubus ellipticus</i>	<i>Rubus niveus</i>
<i>Salix acmophylla</i>	<i>Salvadora oleoides</i>	<i>Sapindus mukorossi</i>

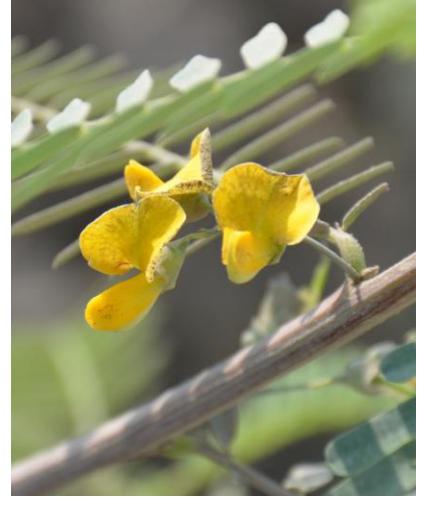


Plate 42

<i>Sapindus emarginatus</i>	<i>Saraca asoca</i>	<i>Schleichera oleosa</i>
<i>Scurrula cordifolia</i>	<i>Scurrula pulverulenta</i>	<i>Searsia mysorensis</i>
<i>Searsia parviflora</i>	<i>Semecarpus anacardium</i>	<i>Senegalia catechu</i>

Plate 43

<i>Senegalia gageana</i>	<i>Senegalia modesta</i>	<i>Senegalia pennata</i>
<i>Senegalia senegal</i>	<i>Senegalia torta</i>	<i>Senna didymobotrya</i>
<i>Senna occidentalis</i>	<i>Senna septemtrionalis</i>	<i>Senna siamea</i>

Plate 44

<i>Senna sulfurea</i>	<i>Senna tora</i>	<i>Senna auriculata</i>
<i>Sericostoma pauciflorum</i>	<i>Sesbania bispinosa</i>	<i>Sesbania sesban</i>
<i>Shorea robusta</i>	<i>Shuteria involucrata</i>	<i>Sida acuta</i>

Plate 45

<i>Sida cordifolia</i>	<i>Sida cordata</i>	<i>Sida rhombifolia</i>
<i>Smilax zeylanica</i>	<i>Soda stocksii</i>	<i>Solanum erianthum</i>
<i>Solanum incanum</i>	<i>Solanum sisymbriifolium</i>	<i>Solanum torvum</i>

Plate 46

<i>Solanum viarum</i>	<i>Solanum virginianum</i>	<i>Solena amplexicaulis</i>
<i>Solena heterophylla</i>	<i>Spermadictyon suaveolens</i>	<i>Spondias pinnata</i>
<i>Stephania glabra</i>	<i>Stephanotis volubilis</i>	<i>Sterculia urens</i>

Plate 47

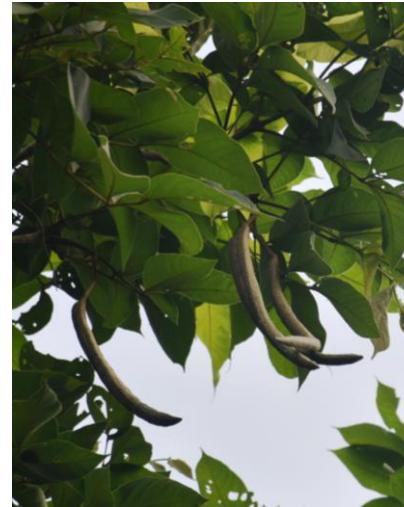

<i>Sterculia villosa</i>	<i>Stereospermum chelonoides</i>	<i>Streblus asper</i>
<i>Strobilanthes atropurpurea</i>	<i>Strobilanthes wallichii</i>	<i>Strychnos nux-vomica</i>
<i>Suaeda fruticosa</i>	<i>Swietenia mahagoni</i>	<i>Syzygium cuminii</i>

Plate 48

<i>Syzygium jambos</i>	<i>Tabernaemontana divaricata</i>	<i>Tadehagi triquetrum</i>
<i>Tamarindus indica</i>	<i>Tamarix indica</i>	<i>Tamarix aphylla</i>
<i>Tamarix dioica</i>	<i>Tamarix ramosissima</i>	<i>Tamilnadia uliginosa</i>

Plate 49

<i>Tecoma stans</i>	<i>Tecomella undulata</i>	<i>Tectona grandis</i>
<i>Tephrosia candida</i>	<i>Tephrosia falciformis</i>	<i>Tephrosia purpurea</i>
<i>Tephrosia uniflora</i>	<i>Terminalia anogeissiana</i>	<i>Terminalia arjuna</i>

Plate 50

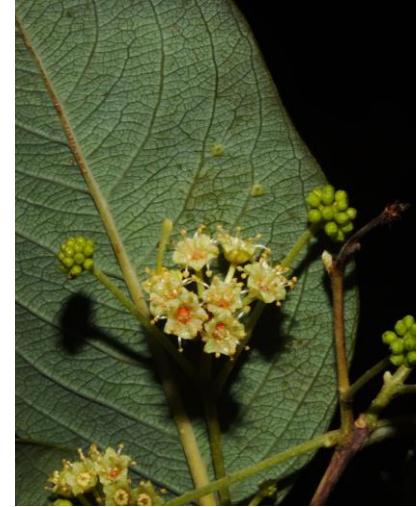


<i>Terminalia bellirica</i>	<i>Terminalia chebula</i>	<i>Terminalia coronata</i>
<i>Terminalia coronata</i> var. <i>parvifolia</i>	<i>Terminalia elliptica</i>	<i>Terminalia pendula</i>
<i>Terminalia catappa</i>	<i>Thespesia lampas</i>	<i>Thunbergia fragrans</i>


Plate 51

<i>Tinospora cordifolia</i>	<i>Toona ciliata</i>	<i>Trema orientalis</i>
<i>Trema politoria</i>	<i>Triadica sebifera</i>	<i>Trichosanthes cucumerina</i>
<i>Triumfetta rhomboidea</i>	<i>Typha elephantina</i>	<i>Uraria picta</i>

Plate 52

<i>Urena lobata</i>	<i>Vachellia eburnea</i>	<i>Vachellia farnesiana</i>
<i>Vachellia jacquemontii</i>	<i>Vachellia leucophloea</i>	<i>Vachellia nilotica</i> subsp. <i>indica</i>
<i>Vachellia tortilis</i>	<i>Vallaris solanacea</i>	<i>Ventilago denticulata</i>

Plate 53

<i>Vincetoxicum spirale</i>	<i>Viscum loranthi</i>	<i>Vitex negundo</i>
<i>Vitex peduncularis</i>	<i>Vitis vinifera</i>	<i>Volkameria inermis</i>
<i>Wendlandia heynei</i>	<i>Withania somnifera</i>	<i>Woodfordia fruticosa</i>

Plate 54

<i>Wrightia arborea</i>	<i>Wrightia tinctoria</i>	<i>Xanthium strumarium</i>	
<i>Xylosma longifolia</i>	<i>Zanthoxylum armatum</i>	<i>Ziziphus glaberrima</i>	
<i>Ziziphus jujuba</i>	<i>Ziziphus nummularia</i>	<i>Ziziphus oenoplia</i>	<i>Ziziphus xylopyrus</i>

4. Discussion

From the total study region in the state, 512 ligneous (woody) species from 342 genera and 84 families (81 angiospermic and 3 gymnospermic) were reported. Fabaceae (96 species), Malvaceae (37 species), Apocynaceae (25 species), Moraceae and Rubiaceae (17 species each), and Moraceae & Euphorbiaceae (6 species each) were the six largest families in the region. *Ficus* is the largest genus (10 species), followed by *Terminalia* (9 species), *Grewia* (9 species), *Senna* (8 species), *Ipomoea* (7 species), *Solanum* (7 species), and *Vachellia* (6 species). Of the 512 species that have been identified, 365 are native, 126 are planted, and 19 are considered invasive. Table 1 contains all the necessary and pertinent information on the plant species that were collected, and excellent 54 photo plates show the images of the Haryana species that were photographed, arranged alphabetically (Photo plates 1-54).

5. Conclusion

For biodiversity to be used sustainably, regular monitoring is essential. In addition to helping forest officials' inventory and tracking the floristic riches of their forest resources, the forest flora also helps policymakers create efficient plans for the wise use of Haryana's floristic wealth. The current study offers a thorough overview of the state's forest flora, including both native and cultivated species. This photographic inventory of Haryana's forest flora will be extremely helpful to researchers, academics, the state biodiversity board, forest officials, and others who are involved in different aspects of the state's flora.

Acknowledgements

The authors are thankful to the Director, Forest Research Institute, Dehradun, for their support

and encouragement and Haryana Forest Department for funding and permission for the work under the project 'Digitization of Forest Floral Wealth of Haryana' and to all the officials of the Haryana Forest Department for their cooperation during the entire course of investigation.

Author's Contribution

PKV conducted the major field work and wrote the original draft of the paper. NS helped in survey and help in drafting, while SK helped in tabulation of data. Additionally, AC and RN were involved in the manuscript preparation. All authors have read and agreed to the final version of the manuscript.

Data Availability

All data generated or analyzed during this study are included in this published article

Conflicts of interest

Authors state that there is no conflict of interest.

References

1. Stewart JL, Brandis D. The forest flora of north-west and central India: a handbook of the indigenous trees and shrubs of those countries. 1824-1907. <https://archive.org/details/forestfloraofnor00stewuoft/page/n5/mode/2up>
2. Beddome RH. The Flora Sylvatica for southern India. Volume 1 & 2. 1869-1873. <https://www.rainforest-initiative.org/the-flora-sylvatica-for-southern-india-by-beddome>
3. Talbot WA. Forest flora of the Bombay Presidency and Sind. 1909-1911. <https://www.rainforest-initiative.org/forest-flora-of-the-bombay-presidency-and-sind-by-talbot>
4. Kanjilal U.N. Forest Flora. Superintendent Government Printing, Calcutta; 1911. <https://archive.org/details/dli.ernet.236618>
5. Parker RN. A Forest Flora for Punjab with Hazara and Delhi. Superintendent Government Printing, Punjab. 1915. <https://indianculture.gov.in/rarebooks/forest-flora-punjab-hazara-and-delhi>
6. Osmaston AE. Forest Flora For Kumaon. Allahabad: Government Press. 1927. <https://archive.org/details/ForestFloraForKumaon>
7. Kanjilal PC. A Forest Flora Pilibhit Oudh Gorakhpur and Bundelkhand (reprint in 1982 by Narendra Publication House, Delhi) 1933. <https://archive.org/details/in.ernet.dli.2015.219948>

8. Haridas K, Rao RR. Forest Flora of Meghalaya, 2 Vols. Bishen Singh Mahendrapal Singh, DehraDun, India. 1987.
9. Naithani HB, Sahni KC, Bennet SSR. Forest Flora of Goa. International Book Distributors, Dehra Dun; 1997.
10. Naithani HB. Forest Flora of Uttar Pradesh, Gutenberg Books Pvt. Ltd. 2018.
11. Krishen P. Jungle Trees of Central India - A Field Guide for Tree Spotters. Penguin India, 2014. <https://www.penguin.co.in/book/jungle-trees-of-central-india/>
12. Page N, Datta, A and Basu, B. Trees of Arunachal Pradesh: A Field Guide, Nature Conservation Foundation, 2022 <https://ncf-store.zohocommerce.in/products/trees-of-arunachal-a-field-guide/163862700000207578>.
13. Royle JF. Illustrations of the Botany and other branches of the Natural History of the Himalayan Mountains and of the flora of Kashmir, W.H. Allen, London. 1939.
14. Stewart JL. Punjab Plants. Government of India. 1869
15. Aitchison JET. A Catalogue of the Plants of the Punjab and Sindh. London.1869.
16. Duthie JF. Flora of the Upper Gangetic Plain and of adjacent Siwalik and sub-Himalayan tracts. 3 vols. Govt. Press, Calcutta. (Repr. ed. 1960. vol. 1-2. BSI, Calcutta). 1903-1929.
17. Collett, H. Flora Simlensis; A handbook of the flowering plants of Simla and the neighbourhood. Thacker, Spink & Coher. 1836-1901.
18. Coventry EM. A Catalogue of the Trees and Shrubs of the Punjab. 1901.
19. Bamber CJ. Plants of the Punjab. Lahore: Government Press. 1916.
20. Kanjilal U, Gupta BL. Forest Flora of Chakrata, Defraud and Saharanpur Forest Division - Uttar Pradesh 3rd ed. 1928; Delhi.
21. Sabinis TS. Flora of Punjab Plains and the Associated Hill Regions. Jour Bombay Nat Hist Soc. 1942; 53-586.
22. Kaul MLH. Flora of Haryana (P- III) A Botanical Study. Grasses J Haryana Studies. 1976; 2: 58 – 74.
23. Kaul, MLH. Flora of Haryana. A Botanical Study" Journal of Haryana Studies Vol. II Nos. 1 8 2 January and December. 1970.
24. Jain SP. Introduced Weeds in the Vegetation of North – East Haryana. *Bull Bot Uni Saugor*. 1981; 27: 46 – 56.
25. Jain SP. Addition to the Flora of North – East Haryana. *J Econ Tax Bot*. 1985; 6(3): 652-654.
26. Jain SP, Verma DM. Some Interesting Plant Records from Haryana State. *J Econ Tax Bot*. 1982; 2:73-78.
27. Jain SP, Verma DM. Medicinal plants in the folklore of Northeast Haryana. *Natl Acad Sci Newslett*. 1987; 4(7): 263-270.
28. Jain SP, Verma DM, Singh SC, Singh JS, Kumar S. Flora of Haryana. 2000; pp 1- 266. CIMAP, Lucknow.
29. Sharma M, Ahmad J, Hussain A, Khan S. Folklore medicinal plants of Mewat (Gurgaon district), Haryana, India. *Pharmaceutical Biol*. 1992; 30: 129-34.
30. Jain SP. Floristic Diversity of Haryana – An Assessment of Threatened Plants for Conservation. *J Econ Tax Bot*. 2004;28(3): 782. 787.
31. Kumar S, Nagiyan P. Trees and Shrubs of Haryana. Oriental Enterprises, Dehradun. 2006.
32. Naithani HB and Chandra A. Additions to the State flora of Haryana (India). *Pleione*. 2022; 16(1): 97 - 102.
33. Jain SP. Ethnobotany of Morni and Kalesar, Dist. Ambala, Haryana. *J Econ Taxon Bot*. 1984;5: 809- 813.
34. Kumar S. Flora of Haryana (Materials). Bishen Singh Mahendra Pal Singh, Dehradun. 2001.
35. Negi SS, Naithani HB, Chandra A, Kamboj SK. Floristic Diversity of Shivalik Hills, Haryana. Forest Research Institute, Dehradun, 2010.
36. Raut SK, Gupta SR. Analysis of Forest Vegetation of Morni hills in northeast Haryana. *Proc Indian Acad Sci (Plant Sci.)*. 1989; 99(2): 117-126.
37. Sharma MP, Ahmad J. Flora of Mewat (Gurgaon district) Haryana. *J Econ Tax Bot*. 1995; 19(1): 55 – 62.
38. Bhojvaid PP. Medicinal Plants of Shiwaliks in Haryana. Forest Dept. Haryana.2003.
39. Panghal M, Arya V, Yadav S, Kumar S, Yadav JP. Indigenous knowledge of medicinal plants used by sapera community of Khetawas, Jhajjar District, Haryana, India. *J Ethnobiol Ethnomed*. 2010; 6:1-11.
40. Yadav SS, Bhandoria MS. Ethnobotanical exploration in Mahendergarh district of Haryana (India). *J Med Plants Res*. 2013; 7(18):1263-1271.
41. Yadav S, Yadav JP, Arya V, Panghal M. Sacred grooves in conservation of plant biodiversity in Mahendergarh District of Haryana. *Indian J Tradit Knowl*. 2010; 9(4): 693- 700.
42. Vashistha BD, Kaur M. Floristic and Ethnobotanical Survey of Ambala district Haryana. *Int J Pharm Bio Sci*. 2013; 4(2): 353 – 360.
43. Kumar M, Singh M. Study of plant diversity of Karnal District, Haryana, India; 2013.
44. Singh B, Singh J. Ethnobotanical uses of some plants from central Haryana, India. *Phytodiversity*. 2014; 1(1&2): 7-24.
45. Singh N, Vashistha BD. Flowering plant diversity and Ethnobotany of Morni Hills, Siwalik Range, Haryana, India. *Int J Pharm Bio Sci*. 2014;5(2): 214-222.
46. Yadav SS, Bhukal RK, Bhandoria MS, Ganis SA, Gulia SK, Raghav TBS. Ethnoveterinary Medicinal Plants of Tosham Block of District Bhiwani (Haryana) India. *J Appl Pharm Sci*. 2014; 4(6): 40-48.
47. Kaur M, Singh N, Vashistha BD. Floristic Diversity of Ambala District, Haryana, India. *Plant Arch*. 2017; 1 (2): 993-1003.
48. Kaur R, Nidhan S, Vashistha BD. Flowering plant diversity of district Karnal, Haryana, India. *Int J Life Sci*. 2016; 4(3): 361-37.
49. Singh A. An ethnobotanical study of medicinal plants in Bhiwani district of Haryana, India. *J Med Plants Stud*. 2016; 4(2): 212-215.
50. Urana R. A Study on Medicinal Flora of Yamunanagar. *Int J Sci Res*. 2017; 6(1): 114-116.
51. Balakrishna A. Flora of Morni Hills. Research & Possibilities. Koeltz Botanical Books. 2018.
52. Balkrishna A, Josh, B, Srivastava A, Shukla BK. Phyto-resources of Morni Hills, Panchkula, Haryana. *Journal of Non-Timber Forest Products*. 2018; 25 (2): 91-98.
53. Lath A, Gulia SS, Kumar M. Floristic Inventory of District Rohtak (Haryana) India. *Plant Arch*. 2018; 18: 219-226

Verma et al. (2025)

54. Saharan H, Dhiman H, Jakhar S. Floristic diversity and vegetation analysis of the community forests of South-West Haryana, India. *Curr Bot.* 2002; 2020:51-59. <https://doi.org/10.25081/cb.2020.v11.6032>
55. Shukla AN, Verma D, Srivastava SK. (2021). Enumeration of Vascular Plants of Kalesar National Park, Yamuna Nagar, Haryana. *Nelumbo.* 2021; 63(1): 130–157. <https://doi.org/10.20324/nelumbo/v63/2021/165153>
56. Yogi A, Pandey RP. Floral Diversity and Ethnobotanical Study at Jind (Haryana) of Northern India. *Ann Biol.* 2023; 39 (1): 98-101.
57. Debta MR, Srivastava SK. Flora of Sultanpur National Park, Gurgaon District, Haryana. Botanical Survey of India, Kolkata, 2015.
58. FSI. State Forest Report, published by Forest Survey of India, Dehra Dun. 2023.