Mechanisms of Auxin Signalling Pathways in Plants: A Comprehensive Review

Authors

DOI:

https://doi.org/10.21276/pt.2025.v2.i3.13

Keywords:

Signalling pathway, genes, TIR1 and AFB, F-box, ARF

Abstract

Auxin is considered the first phytohormone identified for its ability to induce apical growth in plants. Auxin is essential for initiating complex growth and developmental processes in nearly every plant species. Auxin is formed through metabolic processes and then transported to elongation zones, where it induces cell expansion. Auxin biosynthesis occurs primarily in the apical meristems of shoots, young leaves, and developing seeds, and is derived from the amino acid tryptophan. Auxin regulates numerous growth responses in plants, such as phototropism, geotropism, cell maintenance, and organ formation. To mediate these responses and their diverse functions, the nuclear auxin signalling pathway involves several key components. This modular structure allows this pathway to elicit diverse transcriptional responses depending on cellular and environmental conditions.  This molecular process facilitates rapid transitions between gene repression and activation. This study outlines the contemporary paradigm of TIR1/AFB-dependent auxin signalling and highlights recent research breakthroughs.

Author Biographies

  • Bilal Akhtar, Department of Botany, University of Lucknow

    Research Scholar, Department of Botany

  • Rajneesh Kumar Prajapati, Department of Botany, University of Lucknow

    Research Scholar, Department of Botany

  • Amit Kumar Singh, Department of Botany, University of Lucknow

    Assistant Professor, Department of Botany

References

Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010; 61: 49-64. https://doi.org/10.1146/annurev-arplant-042809-112308

De Smet I, Jürgens G. Patterning the embryo: a comparative view on signaling and pattern formation in plant embryogenesis. J Exp Bot. 2007; 58(15-16), 2939-2951. https://doi.org/10.1006/scdb.1997.0210

Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol Plant. 2023; 16(7):1120-1130. https://doi.org/10.1016/j.molp.2023.06.008

Guilfoyle TJ. (2015).The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. The Plant Cell. 2015; 27(1): 33–43. https://doi.org/10.1105/tpc.114.132753

Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev. 2016; 30(20):2286-2296. https://doi.org/10.1101/gad.285361.116

Wang S, Hagen G, Guilfoyle TJ. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression. Plant Signal Behav. 2013; 8(6):e24526. https://doi.org/10.4161/psb.24526

Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants. 2018; 4(7):453-459. https://doi.org/10.1038/s41477-018-0190-1

Mockaitis K, Estelle M. Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol. 2008; 24:55-80. https://doi.org/10.1146/annurev.cellbio.23.090506.123214

Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun. 2018 Mar 21;9(1):1174. https://doi.org/10.1038/s41467-018-03582-5

Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat Plants. 2021; 7(9):1229-1238. https://doi.org/10.1038/s41477-021-00969-z

Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, Del Genio CI, Kubeš MF, Napier R, Jaworski K, Friml J. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022; 611(7934):133-138. https://doi.org/10.1038/s41586-022-053697

Wong A, Tian X, Yang Y, Gehring C. Adenylate cyclase activity of TIR1/AFB links cAMP to auxin-dependent responses. Mol Plant. 2022; 15(12):1838-1840. doi: 10.1016/j.molp.2022.11.012. https://doi.org/10.1016/j.molp.2022.11.012

Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. Physiol Plant. 2025; 177(3):e70229. https://doi.org/10.1111/ppl.70229

Michalko J, Dravecká M, Bollenbach T, Friml J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res. 2015; 4:1104. https://doi.org/10.12688/f1000research.7143.1

Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A. 2015; 112(7):2275-80. https://doi.org/10.1073/pnas.1500365112

Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann WA, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature. 2022; 609(7927):575-581. https://doi.org/10.1038/s41586-022-05187-x

Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H, Wang W, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang Z. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science. 2014; 343(6174):1025-8. https://doi.org/10.1126/science.1245125

Huibin Han, Inge Verstraeten, Mark Roosjen, Ewa Mazur, Nikola Rýdza, Jakub Hajný, Krisztina Ötvös, Dolf Weijers, Jiří Friml. Rapid auxin-mediated phosphorylation of Myosin regulates trafficking and polarity in Arabidopsis. bioRxiv 2021; 439603. https://doi.org/10.1101/2021.04.13.439603

Abu-Abied M, Belausov E, Hagay S, Peremyslov V, Dolja V, Sadot E. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division. J Exp Bot. 2018; 69(12):2869-2881. https://doi.org/10.1093/jxb/ery112

Gomes GLB, Scortecci KC. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biol (Stuttg). 2021; 23(6):894-904. https://doi.org/10.1111/plb.13303

Moubayidin L, Di Mambro R, Sabatini S. Cytokinin-auxin crosstalk. Trends Plant Sci. 2009; 14(10):557-62. https://doi.org/10.1016/j.tplants.2009.06.010

Takatsuka H, Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot. 2014; 65(10):2633-43. https://doi.org/10.1093/jxb/ert485

Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot. 2007; 58(15-16):4269-81. https://doi.org/10.1093/jxb/erm288

Van de Poel B, Smet D, Van Der Straeten D. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development. Plant Physiol. 2015; 169(1):61-72. https://doi.org/10.1104/pp.15.00724

Downloads

Published

2025-10-15

How to Cite

1.
Akhtar B, Prajapati RK, Singh AK. Mechanisms of Auxin Signalling Pathways in Plants: A Comprehensive Review. phytoTalks. 2025;2(3):574-580. doi:10.21276/pt.2025.v2.i3.13