Algal Symbiosis to the Ecological Success of Angiosperms

Review Article

Authors

DOI:

https://doi.org/10.21276/pt.2025.v2.i3.10

Keywords:

Angiosperms, Algal Symbiosis, Endosybiosis, Epiphytic Symbiosis

Abstract

The success of angiosperms (flowering plants) is heavily reliant on their partnerships with algae, a crucial, yet often underestimated, form of symbiotic interaction. This review delves into the complex relationships between angiosperms and algae, highlighting the various types, processes, and ecological significance of these symbiotic bonds. It first examines the different forms of algal symbiosis—including endosymbiosis, epiphytic symbiosis, cyanobacterial symbiosis, and photo symbiosis—each playing a unique role in the plant's physiological and ecological processes. The discussion then moves to the molecular and cellular mechanics that underpin these partnerships, emphasizing the critical interdependencies and nutrient exchanges that sustain them. Furthermore, we analyzed the genetic control of these symbioses, showcasing the precise genes and pathways involved in their initiation and maintenance. This detailed analysis underscores the vital role algal symbiosis plays in enhancing angiosperms' adaptation, particularly in challenging environments, and offers broader insights into the connections within ecology and evolution.

Author Biographies

  • Nikita Gupta, Deen Dayal Upadhaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India

    Department of Botany 

  • Deepshikha Gupta, Deen Dayal Upadhaya Gorakhpur University, Gorakhpur

    Department of Zoology

  • Rajveer Singh Chauhan, Deen Dayal Upadhaya Gorakhpur University, Gorakhpur

    Assistant Professor, Department of Botany

     

References

Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. New Phytol. 2020;227(6):1618-1635. https://doi.org/10.1111/nph.16444

de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. Quant Plant Biol. 2022;3:e16. https://doi.org/10.1017/qpb.2022.3

Radhakrishnan GV, Keller J, Rich MK, Vernié T, Mbadinga Mbadinga DL, Vigneron N, et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat Plants. 2020;6(3):280-289. https://doi.org/10.1038/s41477-020-0613-7

Schagerl M. Algae: Their World Explored. In: Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment. Hershey, PA: IGI Global; 2022:1-31. https://doi.org/10.4018/978-1-6684-2438-4.ch001

Rai AN. Cyanobacteria in symbiosis. In: CRC Handbook of Symbiotic Cyanobacteria. Boca Raton, FL: CRC Press; 2018:1-7.

Adams DG, Duggan PS, Jackson O. Cyanobacterial symbioses. In: Ecology of Cyanobacteria II: Their Diversity in Space and Time. Dordrecht: Springer; 2012:593-647.

Li FW, Brouwer P, Carretero-Paulet L, Cheng S, De Vries J, Delaux PM, et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat Plants. 2018;4(7):460-472. https://doi.org/10.1038/s41477-018-0188-8

Gupta MM, Richardson DH. Anthropogenic impacts on symbiotic systems. Symbiosis. 2021;84(3):229-232. https://doi.org/10.1007/s13199-021-00798-w

Vigneron N, Radhakrishnan GV, Delaux PM. What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis? Curr Opin Plant Biol. 2018;44:49-56. https://doi.org/10.1016/j.pbi.2018.02.004

Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science. 2021;371(6531):eaba6605. https://doi.org/10.1126/science.aba6605

Spicer ME, Woods CL. A case for studying biotic interactions in epiphyte ecology and evolution. Perspect Plant Ecol Evol Syst. 2022;54:125658. https://doi.org/10.1016/j.ppees.2021.125658

Xu P, Wang E. Diversity and regulation of symbiotic nitrogen fixation in plants. Curr Biol. 2023;33(11):R543-R559. https://doi.org/10.1016/j.cub.2023.04.053

Williams NS. Fungal-Algal Speed Dating: Exploring Symbiotic Potential of Fungal-Algal Cocultures. [Internet]. 2019. Available from: [source not specified].

Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. J Plant Physiol. 2022;276:153765. https://doi.org/10.1016/j.jplph.2022.153765

Vančurová L, Malíček J, Steinová J, Škaloud P. Choosing the right life partner: Ecological drivers of lichen symbiosis. Front Microbiol. 2021;12:769304. https://doi.org/10.3389/fmicb.2021.769304

Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The land–sea connection: insights into the plant lineage from a green algal perspective. Annu Rev Plant Biol. 2022;73(1):585-616. https://doi.org/10.1146/annurev-arplant-071921-100530

Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol. 2018;220(4):1012-1030. https://doi.org/10.1111/nph.15076

Douglas AE. The Symbiotic Habit. Princeton, NJ: Princeton University Press; 2021.

Lorenzi AS, Chia MA. Cyanobacteria’s power trio: Auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol. 2024;40(12):381. https://doi.org/10.1007/s11274-024-04191-9

Sanders WB, Masumoto H. Lichen algae: the photosynthetic partners in lichen symbioses. Lichenologist. 2021;53(5):347-393. https://doi.org/10.1017/S0024282921000335

Oliver KM, Higashi CHV. Symbiosis in a rapidly changing world. In: Microbes: The Foundation Stone of the Biosphere. 2021:263-296.

Oborník M, Dorrell RG, Tikhonenkov DV. Mixotrophic, secondary heterotrophic, and parasitic algae. Front Plant Sci. 2021;12:798555. https://doi.org/10.3389/fpls.2021.798555

Grosche C, Genau AC, Rensing SA. Evolution of the symbiosis-specific GRAS regulatory network in bryophytes. Front Plant Sci. 2018;9:1621. https://doi.org/10.3389/fpls.2018.01621

Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol. 2020;18(11):649-660. https://doi.org/10.1038/s41579-020-0402-3

de Vries S, de Vries J. Azolla: a model system for symbiotic nitrogen fixation and evolutionary developmental biology. In: Current Advances in Fern Research. Cham: Springer; 2018:21-46.

Rimington WR, Pressel S, Duckett JG, Field KJ, Bidartondo MI. Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza. 2019;29:551-565. https://doi.org/10.1007/s00572-019-00918-x

Raval PK, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial evolution from algae to angiosperms. bioRxiv. 2023:2023-09. https://doi.org/10.1101/2023.09.01.555919

Soltis PS, Folk RA, Soltis DE. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc R Soc B. 2019;286(1899):20190099. https://doi.org/10.1098/rspb.2019.0099

Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, et al. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants. 2020;6(2):95-106. https://doi.org/10.1038/s41477-019-0560-3

Liu Y, Zeng Z, Zhang YM, Li Q, Jiang XM, Jiang Z, et al. An angiosperm NLR atlas reveals that NLR gene reduction is associated with algal evolution and the earliest land plants. Am J Bot. 2021;110(5):e16175. https://doi.org/10.1016/j.molp.2021.08.001

Alvarenga DO, Rousk K. Unraveling host–microbe interactions and ecosystem functions in moss–bacteria symbioses. J Exp Bot. 2022;73(13):4473-4486. https://doi.org/10.1093/jxb/erac091

Maslova NP, Tobias AV, Kodrul TM. Recent studies of co-evolutionary relationships of fossil plants and fungi: success, problems, prospects. Paleontol J. 2021;55:1-17.

Martin ELH. The Effects of Symbiotic Interactions on the Ecology and Evolution of the Alga Chlorella variabilis [dissertation]. Konstanz, Germany: Universität Konstanz; 2022.

Brundrett MC, Walker C, Harper CJ, Krings M. Fossils of arbuscular mycorrhizal fungi give insights into the history of a successful partnership with plants. In: Transformative Paleobotany. London: Academic Press; 2018:461-480.

Rehman M, Varshney S, Ravi L, Nithaniyal S. Cyanobacterial symbionts from angiosperm. In: Microbial Symbionts. London: Academic Press; 2023:39-55.

Lee WK, Ho CL. Ecological and evolutionary diversification of sulphated polysaccharides in diverse photosynthetic lineages: a review. Carbohydr Polym. 2022;277:118764. https://doi.org/10.1016/j.carbpol.2021.118764

McCourt RM, Lewis LA, Strother PK, Delwiche CF, Wickett NJ, de Vries J, Bowman JL. Green land. [Unpublished/Incomplete citation]. 2023.

Lyu D, Zajonc J, Pagé A, Tanney CA, Shah A, Monjezi N, et al. Plant holobiont theory: the phytomicrobiome plays a central role in evolution and success. Microorganisms. 2021;9(4):675. https://doi.org/10.3390/microorganisms9040675

Downloads

Published

2025-10-15

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

How to Cite

1.
Gupta N, Deepshikha Gupta, Rajveer Singh Chauhan. Algal Symbiosis to the Ecological Success of Angiosperms: Review Article. phytoTalks. 2025;2(3):541-548. doi:10.21276/pt.2025.v2.i3.10