Role of Bryophytes in Phytoremediation: A Review

Review Article

Authors

DOI:

https://doi.org/10.21276/pt.2024.v1.i4.4

Keywords:

Bryophytes, Phytoremediation, Heavy metal removal, Bioaccumulation, Environmental restoration

Abstract

Bryophytes, including mosses, liverworts, and hornworts, are non-vascular plants that are increasingly recognized for their potential in environmental remediation, particularly in the field of phytoremediation. These plants possess unique biological characteristics, such as high surface-area-to-volume ratios, tolerance to diverse environmental conditions, and efficient absorption mechanisms, which enable them to accumulate or degrade various pollutants from air, water, and soil. Bryophytes have demonstrated significant potential in the remediation of heavy metals, organic contaminants, and radioactive substances, as well as in the restoration of ecosystems affected by pollution. This review explores the mechanisms by which bryophytes contribute to phytoremediation, including absorption, bioaccumulation, and the breakdown of contaminants, and examines their application in different environmental contexts. The article also addresses the challenges and future prospects of using bryophytes in phytoremediation practices, highlighting the need for further research to enhance their efficiency and applicability.

Author Biographies

  • Anushee Singh, Bansthali Vidyapith

    PG Student

    Department of Bioscience and Biotechnology

  • Kiran Choudhary, Banasthali Vidyapith

    Senior Research Fellow, Department of Bioscience and Biotechnology

References

Frahm JP. Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers Conserv. 2008; 17: 277–284. https://api.semanticscholar.org/CorpusID:32867600

Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ. The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte. Curr Biol. 2018; 28: 733–745.e2. https://doi.org/10.1016/j.cub.2018.01.063

Harris BJ, Harrison CJ, Hetherington AM, Williams TA. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr Biol. 2020; 30:2001-2012.e2. https://doi.org/10.1016/j.cub.2020.03.048

Zechmeister HG, Dirnböck T, Hülber K, Mirtl M. Assessing airborne pollution effects on bryophytes-lessons learned through long-term integrated monitoring in Austria. Environ Pollut. 2007; 147: 696–705. https://doi.org/10.1016/j.envpol.2006.09.008

Alam A. Bryomonitoring of Environmental Pollution. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore, 2018; pp.349-366. https://doi.org/10.1007/978-981-10-9029-5_13

Zvereva EL, Kozlov MV. Impacts of industrial polluters on bryophytes: A meta-analysis of observational studies. Water Air Soil Pollut. 2011; 218: 573–586.

Chen YE, Cui JM, Yang JC, Zhang ZW, Yuan M, Song C, Yang H, Liu HM, Wang CQ, Zhang HY, Zeng XY, Yuan S. Biomonitoring heavy metal contaminations by moss visible parameters. J Hazard Mater. 2015; 296:201-209. https://doi.org/10.1016/j.jhazmat.2015.04.060

Di Palma A, González AG, Adamo P, Giordano S, Reski R, Pokrovsky OS. Biosurface properties and lead adsorption in a clone of Sphagnum palustre (Mosses): Towards a unified protocol of biomonitoring of airborne heavy metal pollution. Chemosphere. 2019; 236: 124375. https://doi.org/10.1016/j.chemosphere.2019.124375

Samecka-Cymerman A, Marczonek A, Kempers AJ. Bioindication of heavy metals in soil by liverworts. Arch. Environ. Contam Toxicol. 1997; 33: 162–171. https://doi.org/10.1007/s002449900238

Vásquez C, Calva J, Morocho R, Donoso DA, Benítez Á. Bryophyte communities along a tropical urban river respond to heavy metal and arsenic pollution. Water. 2019; 11: 813.

Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, Suzuki S, Nakatsuka S, Kawakami S, Kikuchi J, Sakakibara H. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One. 2017; 12(12):e0189726. https://doi.org/10.1371/journal.pone.0189726

Papadia P, Barozzi F, Migoni D, Rojas M, Fanizzi FP, Di Sansebastiano GP. Aquatic mosses as adaptable bio-filters for heavy metal removal from contaminated water. Int J Mol Sci., 2020: 21: 4769. https://doi.org/10.3390/ijms21134769

Sharma S. Marchantia polymorpha L.: A Bioaccumulator. Aerobiologia. 2007; 23: 181–187. https://doi.org/10.1007/s10453-007-9062-2

Basile A, Sorbo S, Pisani T, Paoli L, Munzi S, Loppi S. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ Pollut. 2012; 166: 208–211. https://doi.org/10.1016/j.envpol.2012.03.018

Lang I, Wernitznig S. Sequestration at the cell wall and plasma membrane facilitates zinc tolerance in the moss Pohlia drummondii. Environ Exp Bot. 2011; 74: 186–193. https://doi.org/10.1016/j.envexpbot.2011.05.018

Degola F, De Benedictis M, Petraglia A, Massimi A, Fattorini L, Sorbo S, Basile A, Di Toppi LS. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol. 2014; 55: 1884–1891. https://doi.org/10.1093/pcp/pcu117

Petraglia A, De Benedictis M, Degola F, Pastore G, Calcagno M, Ruotolo R, Mengoni A, Di Toppi LS. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J Exp Bot. 2014; 65:1153–1163. https://doi.org/10.1093/jxb/ert472

Bellini E, Maresca V, Betti C, Castiglione MR, Fontanini D, Capocchi A, Sorce C, Borsò M, Bruno L, Sorbo S, Basile A, Sanità di Toppi L. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. Int J Mol Sci. 2020; 21:1583. https://doi.org/10.3390/ijms21051583

Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R. The evolution of reactive oxygen species metabolism. J Exp Bot. 2016; 67: 5933–5943. https://doi.org/10.1093/jxb/erw382

Sun SQ, He M, Cao T, Zhang YC, Han W. Response mechanisms of antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or combined Pb and/or Ni. Environ Monit Assess. 2009; 149: 291–302. https://doi.org/10.1007/s10661-008-0203-z

Qu M, Duan W, Chen L. The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review. Appl Sci. 2023; 14(1): 2. https://doi.org/10.3390/app14010002

Zaniewski PT, Kozub Ł, Wierzbicka M. Intermediate disturbance by off-road vehicles promotes endangered pioneer cryptogam species of acid inland dunes. Tuexenia, 2020; 40: 479–497. https://doi.org/10.14471/2020.40.020

Cornelissen JH, Lang SI, Soudzilovskaia NA, During HJ. (2007). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007; 99(5): 987-1001. https://doi.org/10.1093/aob/mcm030

Kasimir Å, He H, Jansson P, Lohila A, Minkkinen K. (2021). Mosses are Important for Soil Carbon Sequestration in Forested Peatlands. Front Environ Sci. 2021; 9:680430. https://doi.org/10.3389/fenvs.2021.680430

Crooks V. Bryophytes: Tiny plants in a big changing world: Smithsonian Tropical Research Institute; 2021 [Accessed 1 June 2022]. https://stri.si.edu/story/bryophytes.

Bahuguna YM, Gairola S, Semwal DP, Uniyal PL, Bhatt AB. Bryophytes and Ecosystem. In Biodiversity of Lower Plants IK International Publishing House Pvt. Ltd., 2014; pp. 279–296. https://www.researchgate.net/publication/263415163

Gimingham CH, Birse EM. Ecological Studies on Growth-Form in Bryophytes: I. Correlations between growth-form and habitat. J Ecol. 1957; 45(2): 533–545. https://doi.org/10.2307/2256934

Gimingham CH. The Use of Life Form and Growth Form in the Analysis of Community Structure as Illustrated by a Comparison of Two Dune Communities. J Ecol. 1951; 39(2): 396–406. https://doi.org/10.2307/2257920

Bates JW. (1990). Interception of Nutrients in Wet Deposition by Pseudoscleropodium purum: An Experimental Study of Uptake and Retention of Potassium and Phosphorus. Lindbergia. 1990; 15(3): 93–98. http://www.jstor.org/stable/20149711

Van De Koot WQM, Msonda J, Olver OP, Doonan JH, Nibau C. Variation in Water-holding capacity in Sphagnum species depends on both plant and colony structure. Plants. 2024; 13(8): 1061. https://doi.org/10.3390/plants13081061

Zechmeister H, Tribsch A, Moser D, Peterseil J, Wrbka T. Biodiversity ‘hot spots’ for bryophytes in landscapes dominated by agriculture in Austria. Agric. Ecosyst. Environ. 2003; 94(2): 159–167. https://doi.org/10.1016/s0167-8809(02)00028-2

Spangler K. Bryophyte Ecosystem Services: How Bryophytes Impact Ecosystem Processes and Their Use in Urban Systems. University Honors Theses. 2021; Paper 1042. https://doi.org/10.15760/honors.1068

Gorham E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol Appl. 1991; 1(2): 182–195. https://doi.org/10.2307/1941811

Lindo Z, Gonzalez A. (2010). The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010; 13(4): 612–627. https://doi.org/10.1007/s10021-010-9336-3

Turetsky MR. (2003). The role of bryophytes in carbon and nitrogen cycling. Bryologist. 2023; 106(3): 395-409. https://www.jstor.org/stable/3244721

Fan X, Yuan G, Liu W. Response strategies of N-fixation by epiphytic bryophytes to water change in a subtropical montane cloud forest. Ecol Indic. 2022; 135: 108527. https://doi.org/10.1016/j.ecolind.2021.108527

Ren J, Liu F, Luo Y, Zhu J, Luo X, Liu R. The Pioneering Role of Bryophytes in Ecological Restoration of Manganese Waste Residue Areas, Southwestern China. J Chem. 2021; 1–19. https://doi.org/10.1155/2021/9969253

Alam A. Soil degradation: a challenge to sustainable agriculture. Int J Sci Res Agric Sci. 2014; 1(4): 50-55. https://doi.org/10.12983/ijsras-2014-p0050-0055

Brüning F, Kreeb KH. Mosses as biomonitors of heavy metal contamination within urban areas. Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. Weinheim: VCH Verlagsgesellschaft, 1993; pp. 394-401.

Tesser T, Bordin J, Da Rocha C, Da Silva A. (2021). Application of the dry and wet biomass of bryophytes for phytoremediation of metals: Batch experiments. Environ Chall. 2021; 5: 100382. https://doi.org/10.1016/j.envc.2021.100382

Alam A, Vats S, Sharma V. Biomonitoring of Heavy Metal Pollution at Mount Abu (Rajasthan, India) using Riccia Billardieri Mont. & Nees ex Gottsche, (Bryophyta: Hepaticae). Int J Sci Res Knowl. 2014; 2(6): 277–284. https://doi.org/10.12983/ijsrk-2014-p0277-0284

Asakawa Y, Ludwiczuk A. Chemical Constituents of Bryophytes: Structures and Biological Activity. J Nat Prod. 2017; 81(3): 641–660. https://doi.org/10.1021/acs.jnatprod.6b01046

Zaitseva, N. (2010). A polysaccharide extracted from Sphagnum moss as antifungal agent in archaeological conservation. In: Masters Abstracts International. 49(2): 1-282. https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/MR65063.PDF?is_thesis=1&oclc_number=808922483

Zilberman D. The impact of agriculture on water quality. In Sustainable management of water in agriculture: issues and policies, The Athens Workshop: OECD Proceedings. 1998; 133-149. https://books.google.co.in/books?id=C4bWAgAAQBAJ

Rashid H, Manzoor MM, Mukhtar S. (2018). Urbanization and its effects on water resources: An exploratory analysis. Asian J Water Environ Pollut. 2018; 15(1): 67-74. https://doi.org/10.3233/ajw-180007

Misra V, Pandey SD. (2005). Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environ Int. 2005; 31(3): 417-431. https://doi.org/10.1016/j.envint.2004.08.005

World Health Organization. WHO global report on traditional and complementary medicine 2019. World Health Organization. https://books.google.co.in/books?id=WHOyDwAAQBAJ

Bhat SA, Bashir O, Haq SAU, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere. 2022; 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788

Oladoye PO, Olowe OM, Asemoloye MD. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere. 2021; 288: 132555. https://doi.org/10.1016/j.chemosphere.2021.132555

Singh R, Verma AK, Prakash S. The web of life: Role of pollution in biodiversity decline. Int J Fauna Biol. 2023; 10(3): 49–52. https://doi.org/10.22271/23940522.2023.v10.i3a.1003

Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci Total Environ. 2022; 850:157961, https://doi.org/10.1016/j.scitotenv.2022.157961.

Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022; 8: 100203. https://doi.org/10.1016/j.envadv.2022.100203

Baker BP, Green TA, Loker AJ. Biological control and integrated pest management in organic and conventional systems. Biological Control. 2020; 140: 104095. https://doi.org/10.1016/j.biocontrol.2019.104095

Hatt B, Deletic A, Fletcher T. Integrated stormwater treatment and re-use systems: inventory of Australian practice. Proceedings of Cities as Catchments; International Conference on Water Sensitive Urban Design. 2004; 1(1): 235-245. https://www.ewater.org.au/archive/crcch/archive/pubs/pdfs/technical200401.pdf

Greenstone M, Hanna R. Environmental Regulations, Air and Water Pollution, and Infant Mortality in India. Am Ec Rev. 2014; 104(10): 3038–3072. https://doi.org/10.1257/aer.104.10.3038

Harjula H. Hazardous Waste. Ann N Y Acad Sci. 2006; 1076(1): 462–477. https://doi.org/10.1196/annals.1371.062

Poikolainen J, Kubin E, Piispanen J, Karhu J. Atmospheric heavy metal deposition in Finland during 1985-2000 using mosses as bioindicators. Sci Total Environ. 2004; 318: 171185. https://doi.org/10.1016/S0048-9697(03)00396-6

Thöni L, Schnyder N, Krieg F. Comparison of metal concentrations in three species of mosses and metal freights in bulk precipitations. Fresenius J Anal Chem. 1996; 354: 703-708. https://doi.org/10.1007/s0021663540703

Alam A, Sharma V. Phytoremediation: A Natural Way of Reclamation (Editorial). Curr Environ Eng. 2017; 4 (1): 3-4. https://doi.org/10.2174/221271780401170414174845

Torres TT, Da Rocha CM, Rodrigues LHR. Bryophytes in removal of environmental contaminants: Review and bibliometric analysis. 2023; Seven Publicações Ltda, CNPJ. https://doi.org/10.56238/devopinterscie-244

Rigoletto, M, Calza P, Gaggero E, Malandrino M, Fabbri D. Bioremediation methods for the recovery of lead-contaminated soils: a review. Appl Sci. 2020; 10(10): 3528. https://doi.org/10.3390/app10103528

Alam A, Sharma V. Heavy Metal Management-A Phytoremediation Perspective. Curr Environ Eng. 2019; 6(1): 4-7. https://doi.org/10.2174/221271780601190301124207

Sharma J. Introduction to Phytoremediation: A Green Clean Technology. SSRN Electronic Journal. Social Science Electronic Publishing, 2018; https://doi.org/10.2139/ssrn.3177321

Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007; 9(11): 2795–2809. https://doi.org/10.1111/j.1462-2920.2007.01391.x

Cao W, Xiong Y, Zhao D, Tan H, Qu J. Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China. Appl Microbiol Biotechnol. 2020; 104(2): 873–891. https://doi.org/10.1007/s00253-019-10235-0

Choudhary K, Alam A. Phytoremediation potential of common Asteraceae weeds: A review. Geophytology. 2024; 54(2): 253–258.

Alam A, Sharma V. Potential of Glycophytes and Halophytes in Phytoremediation of Salt and Metal Contaminated Soils: A Review, Curr Environ Eng. 2017; 4(1): 53-65. https://doi.org/10.2174/2212717804666161223125039

Chopra RN, Kumar PK. Biology of Bryophytes, 2005; New Age International (P) Limited https://books.google.co.in/books?id=zYj4Re6VNc0C

Vanderpoorten A, Goffinet B. Introduction to Bryophytes. 2009; Cambridge University Press. https://doi.org/10.1017/CBO9780511626838

Goffinet B, Buck WR, Shaw AJ. Morphology, anatomy, and classification of the bryophyta. In: Bryophyte Biology, Second Edition: 2008; 55–138. https://doi.org/10.1017/CBO9780511754807.003

During HJ. Life Strategies of Bryophytes: A Preliminary Review. Lindbergia. 1979; 5(1): 2–18. http://www.jstor.org/stable/20149317

Rice SK, Schneider N. Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). American Journal of Botany, 2004; 91(8): 1164–1172. https://doi.org/10.3732/ajb.91.8.1164

Gecheva GM, Yurukova LD. Biomonitoring in running river water with aquatic bryophytes. Scientific Articles. Ecology, Part II, 2006; Science Invest Ltd., Bourgas, Bulgaria.

Sinha S, Singh A, Sinha D, Chatterjee R. A Review on Bryophytes as Key Bio-indicators to Monitor Heavy Metals in the Atmosphere. Int J Plant Environ. 2021; 7(1): 49–62. https://doi.org/10.18811/ijpen.v7i01.5

Oliver MJ. Desiccation Tolerance in Bryophytes: A Reflection of the Primitive Strategy for Plant Survival in Dehydrating Habitats? Integr Comp Biol. 2005; 45(5): 788–799. https://doi.org/10.1093/icb/45.5.788

Proctor MC, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD. Desiccation-tolerance in bryophytes: a review. Bryologist. 2007; 110(4): 595-621. https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2

Gao B, Li X, Zhang D, Liang Y, Yang H, Chen M, Zhang Y, Zhang J, Wood AJ. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum. Sci Rep. 2017; 7(1): 7571. https://doi.org/10.1038/s41598-017-07297-3

Govindapyari H, Leleeka M, Nivedita M, Uniyal PL. Bryophytes: indicators and monitoring agents of pollution. NeBIO. 2010; 1(1): 35-41.

Chimyang N, Shankar V, Evelin H, Uniyal PL. Survivability of Bryophytes in response to Global Warming: A Concern. In Rajiv Gandhi University, Magadh University Gaya College, Manipur University, and University of Delhi, Diversity of Plants and Microbes: Conservation and Traditional Uses: 2024; ISBN: 978-93-6028-409-1 Messers Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 228-238 https://www.researchgate.net/publication/384070247

Macedo-Miranda G, Avila-Pérez P, Gil-Vargas P, Zarazúa G, Sánchez-Meza JC, Zepeda-Gómez C, Tejeda S. Accumulation of heavy metals in mosses: a biomonitoring study. SpringerPlus 2016; 5, 715. https://doi.org/10.1186/s40064-016-2524-7

Saxena A. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum. Parameters. J Environ Biol. 2006; 27(1): 71-75http://jeb.co.in/journal_issues/200601_jan06/paper_13.pdf

Ares Á, Itouga M, Kato Y, Sakakibara H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. Bull Environ Contam Toxicol. 2017; 100(3): 444–450. https://doi.org/10.1007/s00128-017-2241-0

Ștefănuț S, Öllerer K, Manole A, Ion MC, Constantin M, Banciu C, Maria GM, Florescu LI. National environmental quality assessment and monitoring of atmospheric heavy metal pollution-A moss bag approach. J Environ Manage. 2019; 248, 109224. https://doi.org/10.1016/j.jenvman.2019.06.125

Klavina L, Ramawat K, Mérillon JM. Polysaccharides from lower plants: bryophytes. Polysaccharides. 2015; 145-160. https://doi.org/10.1007/978-3-319-03751-6_11-1

Vats SK, Singh A, Koul M, Uniyal PL. Study on the metal absorption by two mosses in Delhi Region (India). J Am Sci. 2010; 6(3): 176-181. https://www.jofamericanscience.org/journals/am-sci/am0603/23_1241_uniyal_am0603_176_181.pdf

Esposito S, Sorbo S, Conte B, Basile A. (2011). Effects of Heavy Metals on Ultrastructure and HSP70S Induction in the Aquatic Moss Leptodictyum Riparium Hedw. Int J Phytoremediation. 2011; 14(4): 443–455. https://doi.org/10.1080/15226514.2011.620904

Basile A, Sorbo S, Pisani T, Paoli L, Munzi S, Loppi S. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ Pollut. 2012; 166: 208–211. https://doi.org/10.1016/j.envpol.2012.03.018

Šoltés R, Gregušková E. Accumulation characteristics of some elements in the moss Polytrichum commune (bryophytes) based on XRF spectrometry. J Environ Prot. 2013; 4(6): 522-528. https://doi.org/10.4236/jep.2013.46061

Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, Suzuki S, Nakatsuka S, Kawakami S, Kikuchi J, Sakakibara H. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS ONE. 2017; 12(12), e0189726. https://doi.org/10.1371/journal.pone.0189726

Sandhi A, Landberg T, Greger M. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environ Pollut. 2017; 237:1098–1105. https://doi.org/10.1016/j.envpol.2017.11.038

Aydoğan S, Erdağ B, Aktaş LY. Bioaccumulation and oxidative stress impact of Pb, Ni, Cu, and Cr heavy metals in two bryophyte species, Pleurochaete squarrosa and Timmiella barbuloides. Turk J Bot. 2017; 41: 464–475. https://doi.org/10.3906/bot-1608-33

Papadia P, Barozzi F, Migoni D, Rojas M, Fanizzi FP, Di Sansebastiano G. Aquatic Mosses as Adaptable Bio-Filters for Heavy Metal Removal from Contaminated Water. Int J Mol Sci. 2020; 21(13): 4769. https://doi.org/10.3390/ijms21134769

Konno H, Nakashima S, Katoh K. Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol. 2009; 167(5): 358–364. https://doi.org/10.1016/j.jplph.2009.09.011

Boquete MT, Schmid MW, Wagemaker NC, Carey SB, McDaniel SF, Richards C. L, Alonso C. Molecular basis of intraspecific differentiation for heavy metal tolerance in the copper moss Scopelophila cataractae. Environ Exp Bot. 2022; 201: 104970. https://doi.org/10.1016/j.envexpbot.2022.104970

Taeprayoon P, Pongphontong K, Somtrakoon K, Phusantisampan T, Meeinkuirt W. Synergistic effects of zinc and cadmium on phytoremediation potential of Christmas moss (Vesicularia montagnei). Sci Rep. 2024; 14: 17754. https://doi.org/10.1038/s41598-024-68849-y

Phaenark C, Seechanhoi P, Sawangproh W. Metal toxicity in Bryum coronatum Schwaegrichen: impact on chlorophyll content, lamina cell structure, and metal accumulation. Int J Phytoremediation. 2024; 26(8): 1336–1347. https://doi.org/10.1080/15226514.2024.2317878

Kłos A, Gordzielik E, Jóźwiak MA, Rajfur M. Sorption of Cadmium and Zinc in Selected Species of Epigeic Mosses. Bull Environ Contam Toxicol. 2014; 92(3): 323–328. https://doi.org/10.1007/s00128-014-1210-0

Tholozan LV, Filho AV, Maron GK, Carreno NLV, Da Rocha CM, Bordin J, Da Rosa GS. Sphagnum perichaetiale Hampe biomass as a novel, green, and low-cost biosorbent in the adsorption of toxic crystal violet dye. Environ Sci Pollut Res. 2023; 30(18): 52472–52484. https://doi.org/10.1007/s11356-023-26068-4

Igbari AD, Amusa OD, Orisejobor DF, Ogundipe OT. Mnium hornum Hedw moss as bioindicator of atmospheric pollution of heavy metals in the University of Lagos, Akoka Campus. ChemSearch Journal. 2024; 15(1): 86-94. https://www.ajol.info/index.php/csj/article/view/273650

Taeprayoon P, Printarakul N, Somtrakoon K, Chunwichit S, Yooma K, Wiangdao S, Avakul P, Meeinkuirt W. Potentially toxic element accumulation of bryophyte taxa in contaminated soils at Tak Province, Thailand. Ecol Indic. 2023; 147: 109971. https://doi.org/10.1016/j.ecolind.2023.109971

Ghatge MM, Shaikh SD, Dongare M. Study on the metal absorption by two bryophytes from Koyana wildlife sanctuary (India). J Exp Sci. 2011; 2(3). https://core.ac.uk/download/pdf/236016144.pdf

Shaw AJ, Szövényi P, Shaw B. Bryophyte diversity and evolution: Windows into the early evolution of land plants. Am J Bot. 2011; 98(3): 352–369. https://doi.org/10.3732/ajb.1000316

Pandey S, Alam A. Peat moss: A hyper-sorbent for oil spill cleanup - a review. Plant Sci Today. 2019; 6(4): 416–419. https://doi.org/10.14719/pst.2019.6.4.586

Fierascu I, Baroi AM, Fistos T, Brazdis RI, Sardarescu (Toma) ID, Fierascu RC. Bryophytes and Nanotechnology: Recent Developments and Perspectives. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. 2023; Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_29

Yadav KK, Singh JK, Gupta N, Kumar VJJMES. A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci. 2017; 8(2): 740-757. http://www.jmaterenvironsci.com/Document/vol8/vol8_N2/78-JMES-2831-Yadav.pdf

Salbitani G, Maresca V, Cianciullo P, Bossa R, Carfagna S, Basile A. (2023). Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance. Int J Mol Sci. 2023; 24(6): 5302. https://doi.org/10.3390/ijms24065302

Downloads

Published

2025-01-31

Data Availability Statement

N.A.

How to Cite

Singh, A., & Choudhary, K. . (2025). Role of Bryophytes in Phytoremediation: A Review: Review Article. PhytoTalks, 1(4), 215-230. https://doi.org/10.21276/pt.2024.v1.i4.4