Exploring the Potential of Bryophytes in Cancer Research
Review Article
DOI:
https://doi.org/10.21276/pt.2024.v1.i4.2Keywords:
Bryophytes, , Cancer, bioactive compounds, anticancer activity, PhytochemicalsAbstract
Bryophytes, a diverse group of non-vascular plants, have emerged as an intriguing source of bioactive compounds with potential therapeutic properties in cancer research. Despite their modest size and simplicity, bryophytes possess unique chemical constituents, including alkaloids, flavonoids, terpenoids, and polysaccharides, that exhibit cytotoxic, anti-inflammatory, and anticancer effects. Recent studies have highlighted their ability to inhibit tumor growth, induce apoptosis in cancer cells, and modulate various signaling pathways involved in cancer progression. This review aims to explore the utility of bryophytes in cancer research, focusing on the bioactive compounds derived from these plants and their mechanisms of action against various cancer types. We also discuss the challenges and opportunities in translating bryophyte-based compounds into therapeutic agents. Given the growing interest in natural product-based drug discovery, bryophytes hold significant promise as a novel source for anticancer drug development.
References
Singh S, Sharma R, Joshi S, Alam A. Utilization of the First Land Plants (Bryophytes) as a Source of Beneficial Bioactive Chemicals. Res J Phytochem. 2023; 17(1): 26-36. https://doi.org/10.3923/rjphyto.2023.26.36
Magill RE. Moss diversity: new look at old numbers. Phytotaxa. 2010; 167-174.https://doi.org/10.11646/phytotaxa.9.1.9
Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges A L, Zhu, R. L. World checklist of hornworts and liverworts. PhytoKeys. 2016; 59:1–828. https://doi.org/10.3897/phytokeys.59.6261
Shaw J, Renzaglia K. (2004). Phylogeny and diversification of bryophytes. Am J Bot. 2004; 91(10), 1557-1581. https://doi.org/10.3732/ajb.91.10.1557
Asakawa Y, Ludwiczuk A, Nagashima F. Chemical constituents of bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. Prog chem org nat prod. 2013; 95: 1–796. https://doi.org/10.1007/978-3-7091-1084-3_1
Gradstein SR, Churchill SP, Salazar-Allen N. Guide to the bryophytes of tropical America. Memoirs of the New York Botanical Garden, 2001; 86: 1–577.
He X, Sun Y, Zhu RL. The Oil Bodies of Liverworts: Unique and Important Organelles in Land Plants. Crit Rev Plant Sci. 2013; 32(5): 293–302. https://doi.org/10.1080/07352689.2013.765765
Asakawa Y, Ludwiczuk A. (2018). Chemical constituents of bryophytes: Structures and biological activity. J Nat Prod. 2018; 81(3): 641–660. https://doi.org/10.1021/acs.jnatprod.6b01046
Flowers, S. (1957). Ethnobryology of the Gosuite Indians of Utah. The Bryologist. 1957; 60(1):11-14.https://doi.org/10.2307/3240044
Halder K, Chakraborty S. An account of antioxidant potential in pteridophytes: a biochemical perspective. IJBB, 2018; 6(1): 15-24.http://dx.doi.org/10.30954/2319-5169.01.2018.3
Pant GP. Medicinal uses of bryophytes. Topics in Bryology. Allied Publishers Limited, New Delhi, 1998; pp. 112-124.
Glime JM. (2007). Economic and ethnic uses of bryophytes. Flora of North America, 2007; 27(1919), 14-41. http://flora.huh.harvard.edu/FloraData/001/WebFiles/fna27/FNA27-Chapter2.pdf
Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem. 2007; 79(4): 557–580. https://doi.org/10.1351/pac200779040557
Asakawa Y. A biologically Active Substances from Bryophytes. In: Chopra RN, Bhatla SC (Eds.), Bryophyte Development: Physiology and Biochemistry. CRC Press, Boca Raton, 1990; pp. 259–287.
Frahm JP. Recent developments of commercial products from bryophytes. The Bryologist, 2004; 107: 277-283.
Nath V, Singh M, Rawat AKS and Govindrajan R. Antimicrobial activity of some Indian mosses. Fitoterapia. 2007; 78: 56-158.
Singh M, Rawat AK, Govindrajanm R. Antimicrobial activity of some Indian mosses. Fitoterapia, 2007; 78: 56-158.
Saini S, Alam A, Vats S. Bioactive compounds and antioxidant capacity of selected bryophytes: Relatively neglected plants. Plant Biosyst. 2021; 156(2):590-593, http://dx.doi.org/10.1080/11263504.2021.2020354
Banerji R. Recent advances in the chemistry of liverworts. Perspectives in Indian bryology. Bishen Singh Mahendra Pal Singh, Dehra Dun, 2021; pp. 171-207.
Ding H. Medicinal spore-bearing plants of China. Shanghai Science and Technology Press, Shanghai, 1982; pp. 1-409.
Ando H, Matsuo A. Applied bryology. Adv Bryol. 1984; 2:133-224.
Asakawa Y. Chemical constituents of the bryophytes. In: Herz W, Kirby GW, Moore RE, Steglich W. (Eds.), Progress in the chemistry of organic natural products. Springer-Verlag, 1995; pp. 618.
Shaw AJ, Goffinet B (Eds.). Bryophyte biology. Cambridge University Press. 2000. https://books.google.co.in/books?id=fuOKCOlRngkC
Lubaina AS, Pradeep DP, Aswathy JM, Remya Krishnan MKV, Murugan K. Traditional knowledge of medicinal bryophytes by the kani tribes of Agasthiyarmalai biosphere reserve, southern western ghats. IAJPS, 2014; 4: 2116-2121.
Miller NG, Miller H. (1979). Make ye the bryophytes. Horticulture. 1979; 57, 40–47.
Kumar K, Singh KK, Asthana AK, Nath V. (2000). Ethnotherapeutics of bryophyte Plagiochasma appendiculatum among the Gaddi tribes of Kangra valley, Himachal Pradesh, India. Pharm Biol. 2000; 38: 353–356.https://doi.org/10.1076/phbi.38.5.353.5963
Alam A. Ethnobryology in India. In: Editors: Pullaiah T, Krishnamurthy KV, Bir Bahadur (Eds.) Ethnobotany of India: Volume 2
Western Ghats and West Coast of Peninsular India Apple Academic Press (CRC Press), USA. 2017; pp. 318-330.
Remesh M, Manju CN. Ethnobryological Notes from Western Ghats, India. The Bryologist. 2009; 112(3), 532–537. http://www.jstor.org/stable/25614870
Alam A. (2012). Some Indian bryophytes known for their biologically active compounds. IJABPT, 2012; 3(2): 239-246.
Shirsat RP. Ethnomedicinal uses of some common bryophytes and pteridophytes used by tribals of Melghat region (Ms), India. Ethnobotanical Leaflets. 2008; 2008(1): 92. https://opensiuc.lib.siu.edu/ebl/vol2008/iss1/92
Azuelo AG, Sariana LG, Pabualan MP. Some medicinal bryophytes: their ethnobotanical uses and morphology. Asian Journal of Biodiversity. 2011; 2(1).49-80. http://dx.doi.org/10.7828/ajob.v2i1.92
Chandra S, Chandra D, Barh A, Pandey RK, Sharma IP. Bryophytes: Hoard of remedies, an ethno-medicinal review. J Tradit Complement Med. 2017; 7(1): 94-98.https://doi.org/10.1016/j.jtcme.2016.01.007
Wu C, Gunatilaka AL, McCabe FL, Johnson RK, Spjut RW, Kingston DG. Bioactive and other sesquiterpenes from Chiloscyphus rivularis. J Nat Prod. 1997; 60(12), 1281-1286. https://doi.org/10.1021/np970251u
Kim YC, da S Bolzani V, Baj N, Gunatilaka AL, Kingston DG. A DNA-damaging sesquiterpene and other constituents from Frullania nisquallensis. Planta Med. 1996; 62(01), 61-63. https://doi.org/10.1055/s-2006-957800
Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic bibenzyls, and germacrane-and pinguisane-type sesquiterpenoids from Indonesian, Tahitian and Japanese liverworts. Nat Prod Commun. 2011; 6(3): 303-309. https://doi.org/10.1177/1934578X1100600301
Guo YX, Lin ZM, Wang MJ, Dong YW, Niu HM, Young CY, Yuan HQ. Jungermannenone A and B induce ROS-and cell cycle-dependent apoptosis in prostate cancer cells in vitro. Acta Pharmacol Sin. 2016; 37(6): 814-824. https://doi.org/10.1038/aps.2016.26
Scher JM, Burgess EJ, Lorimer SD, Perry NB. A cytotoxic sesquiterpene and unprecedented sesquiterpene-bisbibenzyl compounds from the liverwort Schistochila glaucescens. Tetrahedron, 2002; 58(39): 7875–7882. https://doi.org/10.1016/S0040-4020(02)00899-2
Cairns, J. THE CANCER PROBLEM. Sci Am. 1975; 233(5): 64–79. http://www.jstor.org/stable/24949939
Weinberg RA. How cancer arises. Sci Am. 1996; 275(3): 62-70. https://www.jstor.org/stable/24993349
Sabovljević MS, Sabovljević AD, Ikram NKK, Peramuna A, Bae H, Simonsen HT. Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genet Res. 2016; 14(4), 314–327. https://doi.10.1017/S1479262116000320
Jain V, Ghorai M, Das T, Dey A. Anticancerous Compounds from Bryophytes: Recent Advances with Special Emphasis on Bis(bi)benzyls. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-23243-5_3
Spjut RW, Suffness M, Cragg GM, Norris DH. Mosses, liverworts, and hornworts screened for antitumor agents. Econ Bot. 1986; 40(3): 310-338. https://doi.org/10.1007/BF02858989
Sakai K, Ichikawa T, Yamada U, Yamashita M, Tanimoto M, Hikita A, Ijuin Y, Kondo K. Antitumor principles in mosses: The first isolation and identification of maytansinoids, including a novel 15-methoxyansamitocin P-3. J Nat Prod. 1988; 51(5): 845-850. https://doi.org/10.1021/np50059a005
Xiao JB, Chen XQ, Zhang YW, Jiang XY, Xu M. Cytotoxicity of Marchantia convoluta leaf extracts to human liver and lung cancer cells. Braz J Med Biol Res. 2006; 39: 731-738. https://doi.org/10.1590/S0100-879X2006000600005
Shi YQ, Zhu CJ, Yuan HQ, Li BQ, Gao J, Qu XJ, Lou H X. Marchantin C, a novel microtubule inhibitor from liverwort with anti-tumor activity both in vivo and in vitro. Cancer Lett. 2009; 276(2):160-170. https://doi.org/10.1016/j.canlet.2008.11.004
Huang WJ, Wu CL, Lin CW, Chi LL, Chen PY, Chiu CJ, Chen CN. Marchantin A, a cyclic bis (bibenzyl ether), isolated from the liverwort Marchantiaemarginata subsp. tosana induces apoptosis in human MCF-7 breast cancer cells. Cancer Lett. 2010; 291(1): 108-119.https://doi.org/10.1016/j.canlet.2009.10.006
Mercader AG, Pomilio AB. Naturally-occurring dimers of flavonoids as anticarcinogens. Anticancer Agents Med Chem. 2012; 13(8): 1217-1235. https://doi.org/10.2174/18715206113139990300
Lin Z-M, Guo Y-X, Wang S-Q, Wang X-N, Chang W-Q, Zhou J-C, Yuan H, Lou H. (2014). Diterpenoids from the Chinese liverwort Heteroscyphustener and their antiproliferative effects. J Nat Prod. 2014; 77(6): 1412–1419. https://doi.org/10.1021/np5000507
Dey A, Mukherjee A. Therapeutic potential of bryophytes and derived compounds against cancer. J Acute Dis. 2015; 4(3):236-248. https://doi.org/10.1016/j.joad.2015.04.011
Yuan W, Cheng X, Wang P, Jia Y, Liu Q, Tang W, Wang X. Polytrichum commune L. ex Hedw. ethyl acetate extract-triggered perturbations in intracellular Ca2+ homeostasis regulates mitochondrial-dependent apoptosis. J Ethnopharmacol. 2015; 172: 410-420. https://doi.org/10.1016/j.jep.2015.07.002
Klavina L, Springe G, Nikolajeva V, Martsinkevich I, Nakurte I, Dzabijeva D, Steinberga I. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules, 2015; 20(9): 17221-17243. https://doi.org/10.3390/molecules200917221
Abay G, Altun M, Koldas S, RizaTufekci A, Demirtas I. (2015). Determination of antiproliferative activities of volatile contents and HPLC profiles of Dicranum scoparium (Dicranaceae, Bryophyta). Comb Chem High Throughput Screen. 2015; 18(5): 453-463.
Chandra S, Chandra D, Khajuria AK. Ohioensins: A Potential Therapeutic Drug for Curing Diseases. In: Bryophytes. IntechOpen. 2019; https://books.google.co.in/books?id=czj8DwAAQBAJ
Vollár M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Bérdi P, Vecsernyés A, Csorba A, Liktor-Busa E, Urbán E, Csupor D. Antiproliferative and Antimicrobial Activities of Selected Bryophytes. Molecules. 2018; 23(7): 1520. https://doi.org/10.3390/molecules23071520
Yayıntaş OT, Yılmaz S, Sökmen M. Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale, Turkey). Indian J Tradit Knowl. 2019; 18(2):395-401 http://nopr.niscpr.res.in/handle/123456789/47066
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res. 2020; 161:105165. https://doi.org/10.1016/j.phrs.2020.105165
Özerkan D, Erol A, Altuner EM, Canlı K, Kuruca DS. Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer Cells. Nutr Cancer. 2021; 74(3): 1012–1022. https://doi.org/10.1080/01635581.2021.1933098
Zhou F, Aipire A, Xia L, Halike X, Yuan P, Sulayman M, Wang W, Li J. Marchantia polymorpha L. ethanol extract induces apoptosis in hepatocellular carcinoma cells via intrinsic-and endoplasmic reticulum stress-associated pathways. Chin Med. 2021; 16: 1-17. https://doi.org/10.1186/s13020-021-00504-4
Ivković I, Novaković M, Veljić M, Mojsin M, Stevanović M, Marin PD, Bukvički D. Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity. Plants, 2021; 10(6): 1063. https://doi.org/10.3390/plants10061063
Cianciullo P, Cimmino F, Maresca V, Sorbo S, Bontempo P, Basile A. Anti-Tumour Activities from Secondary Metabolites and Their Derivatives in Bryophytes: A Brief Review. Appl Biosci. 2022; 1(1): 73-94. https://doi.org/10.3390/applbiosci1010005
Li M, Wang L, Li S, Hua C, Gao H, Ning D, Li C, Zhang C, Jiang F. Chemical Composition, Antitumor Properties, and Mechanism of the Essential Oil from Plagiomnium acutum T. Kop. Int J Mol Sci. 2022; 23(23):1479014790. https://doi.org/10.3390/ijms232314790
Sharma R, Singh S, Alam A. Pharmacological, Cytotoxic, Immunostimulant, and Auto-Immune Activity of Thalloid Liverworts: An Overview. Crit Rev Immunol. 2022; 42(5):9-19.https://doi.org/10.1615/CritRevImmunol.2022047292
Bailly C Discovery and Anticancer Activity of the Plagiochilins from the Liverwort Genus Plagiochila. Life. 2023; 13(3), 758. https://doi.org/10.3390/life13030758
Singh S, Sharma R, Joshi S, Alam A. Utilization of the First Land Plants (Bryophytes) as a Source of Beneficial Bioactive Chemicals. Res J Phytochem. 2023; 17(1), 26-36. https://doi.org/10.3923/rjphyto.2023.26.36
Sharma R, Singh S, Mareddy NSR, Merchant N, Alam A. Gas chromatography-mass spectroscopic profiling and cytotoxic activity of Riccia billardieri Mont. & Nees (Bryophyta: Liverwort). Results Chem. 2023; 6: 101004. https://doi.org/10.1016/j.rechem.2023.101004
Fernandes ADS, de Oliveira CG, Evangelista H, Sulamita DS, M, Araujo-Lima CF, Felzenszwalb I. In vitro chemopreventive and cytotoxic effects of Amazon mosses Leucobryum martianum (Hornsch.) and Leucobryum laevifolium (Broth) extracts. Mutagenesis. 2024; 39(1): 56-68. https://doi.org/10.1093/mutage/gead028
Pandey P, Rawat S, Joshi P, Chandra S. A study on ethnomedicinal uses and phytochemistry of bryophytes; especially focusing on anticancer properties. Int J Botany Stud. 2024; 9(10): 8-15.
Pandey S, Alam A. Bryo-Pharmaceuticals: An Emerging Era of Pharmaceutical Products (Ch. 14). In: Singh A, Singh P, Bithel N (Eds.) Advanced Pharmacological Uses of Medicinal Plants and Natural Products. 2020; IGI Global Scientific Publishing. pp. 1-16. https://doi.org/10.4018/978-1-7998-2094-9.ch014
Rao GN, Chatterjee R. Folklore utilisation of bryophtes amongst the tribal regions of north coastal Andhra. Int J Environ. 2014; 3(4): 101-108.
Singh S, Sharma R, Singh B, Alam A. Phytochemical screening and cytotoxic activity of a moss: Barbula javanica Dozy & Molk. Results Chem. 2023; 6, 101003. https://doi.org/10.1016/j.rechem.2023.101003
Sharma SC, Tripathi A, Rawat KK, Yadav S, Alam A. Habitat Range of Bryophytes: A pictorial Representation. Recent Advances in Botanical Science. Betham Science Publishers, UK. 2020; 1: 123-133.
Joshi S, Singh S, Sharma R, Vats S, Alam A. Gas chromatography‑mass spectrometry (GC–MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential. Vegetos. 2022; 36(1):87-92. https://doi.org/10.1007/s42535-022-00458-4
Sharma T, Singh S, Alam A. Phytochemical Profiling, Antioxidant and Anti-Cancerous Activity of Hydrogonium arcuatum (Griff.) Wijk. & Marg. (Bryophyta: Pottiaceae). Asian J Biol Sci. 2024; 17 (3): 469-481. https://doi.org/10.3923/ajbs.2024.469.481
Joshi S, Singh S, Sharma R, Vats S Nagaraju GP, Alam A. Phytochemical screening and antioxidant potential of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson. Plant Sci Today. 2022; 9(4): 986-90. https://doi.org/10.14719/pst.1892
Downloads
Published
Data Availability Statement
N.A.
Issue
Section
License
Copyright (c) 2025 PhytoTalks

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.