Isolation, purification and identification of cyanobacterium Tolypothrix sp. KJE1
Research Article
DOI:
https://doi.org/10.21276/pt.2024.v1.i4.5Keywords:
Rice field, sample, strain, light microscopy, Heterocyst, hormogonia, BLASTAbstract
A cyanobacterial strain, Tolypothrix sp. KJE1, was isolated from rice fields of Banaras Hindu University, Varanasi, during the monsoon of 2019. Morphological analysis and 16S rRNA phylogenetic studies identified it as Tolypothrix sp., known for nitrogen fixation. The partial 16S rRNA gene sequence (1283 bps) was submitted to NCBI (Accession Number OP353555). This study underscores Tolypothrix’s role in sustainable agriculture, contributing to soil fertility and reducing dependency on synthetic fertilizers, with potential applications in biofertilization.
References
Sergeev VN, Gerasimenko LM, Zavarzin GA. The Proterozoic History and Present State of Cyanobacteria. Microbiology. 2002; 71: 623–637. https://doi.org/10.1023/A:1021415503436
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv. 2009; 27(4):521-39. https://doi.org/10.1016/j.biotechadv.2009.04.009
Adams DG. Heterocyst formation in cyanobacteria. Curr Opin Microbiol. 2000; 3(6):618-24. https://doi.org/10.1016/s1369-5274(00)00150-8
Whitton BA. Soils and rice-fields. The ecology of cyanobacteria: Their diversity in time and space, 2002; pp.233-255. https://doi.org/10.1007/0-306-46855-7
Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol. 2010; 2(4):a000315. https://doi.org/10.1101/cshperspect.a000315
Wilson AE, Sarnelle O, Tillmanns AR. 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta analyses of laboratory experiments. Limnol Oceanogr. 2006; 51(4):1915-1924. https://doi.org/10.4319/lo.2006.51.4.1915
Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol. 2016; 21;7:529. https://doi.org/10.3389/fmicb.2016.00529
Bernis JMF, Pamies CB. Economía del arroz: variedades y mejora. Juan Carlos Martínez Coll, 2008
Pareja L, Fernández-Alba AR, Cesio V, Heinzen H. 2011. Analytical methods for pesticide residues in rice. TrAC, Trends Anal Chem. 2011; 30(2): 270-291. http://dx.doi.org/10.1016%2Fj.trac.2010.12.001
Prasanna R, Nayak S. Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetl Ecol Manag. 2007; 15:127-134. https://doi.org/10.1007/s11273-006-9018-2
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979; 111: 1–61. http://dx.doi.org/10.1099/00221287-111-1-1
Konopka A, Brock TD. Effect of temperature on blue-green algae (cyanobacteria) in lake mendota. Appl Environ Microbiol. 1978; 36(4):572-6. https://doi.org/10.1128/aem.36.4.572-576.1978
Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM. Comparison of cyanobacterial and green algal growth rates at different temperatures. Fresh Biol. 2013; 58: 552–559. https://doi.org/10.1111/j.1365-2427.2012.02866.x
Barcytė D, Hodač L, Nedbalová L. Lunachloris lukesovae gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga isolated from soil in South Bohemia, Czech Republic. Eur J Phycol. 2017; 52(3): 281–291. https://doi.org/10.1080/09670262.2017.1283541
Desikachary TV. ICAR monograph on algae. Indian Council of Agric. Research New. 1959; 1-686, 72s. https://doi.org/10.1038/189343a0
Geitler L. Cyanophyceae. In: Rabenhorst, L. (ed.), KryptogamenFlora, band, Akademische Verlagsgesellschaft, Leipzig. 1932
Komárek J. “Cyanoprokaryota. part 3: heterocytous genera,” in Freshwater flora of central Europe. Eds. B. Büdel, G. Gärtner, L. Krienitz and M. Schagerl (Berlin Heidelberg: Springer-Verlag), 2013; p. 1–1130.
Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol. 2013; 15(5 Spl): 1239-1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x
Singh P, Fatma A, Mishra AK. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcl gene sequence data. Ann Microbiol. 2015; 65:799–807. https://doi.org/10.1007/s13213-014-0920-1
Sanger F. Sequences, sequences, and sequences. Annu Rev Biochem. 1988;57:1-28. https://doi.org/10.1146/annurev.bi.57.070188.000245
Bonen L, Doolittle WF, Fox GE. Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analysis. Can J Biochem. 1979; 57:879-888. https://doi.org/10.1139/o79-108
Woese CR. Bacterial evolution. Microbiol Rev. 1987; 51(2):221-71. https://doi.org/10.1128/mr.51.2.221-271.1987
Downloads
Published
Data Availability Statement
The data supporting the findings of this study are available within the article. The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.
Issue
Section
License
Copyright (c) 2025 PhytoTalks

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and License Terms
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License permitting others to share it with proper acknowledgement of the authorship and its original publication in this journal.
- Authors may enter into additional, non-exclusive agreements for distributing the published version of their work (e.g., depositing it in an institutional repository or including it in a book), provided they acknowledge that the work was first published in this journal.
Open Access Policy
License
PhytoTalks is an open-access journal, allowing readers to access all published articles without registration. All articles are distributed under the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. (https://creativecommons.org/licenses/by/4.0/).
License summary:
This license allows others to:
-
Share — copy and redistribute the material in any medium or format
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms: -
Attribution — appropriate credit must be given, a link to the license provided, and indication if changes were made.
Author Warranties
By submitting a manuscript to PhytoTalks, authors confirm that:
-
The work is original and does not infringe any copyright, trademark, patent, or other rights of third parties.
-
The work has not been published elsewhere (except as a preprint) and is not under consideration by another publication.
-
All necessary permissions for any third-party materials used in the manuscript have been obtained.
Citation Policy
When using or citing articles from PhytoTalks, proper attribution must be given to the original authors and the source, including a DOI link where available.